Outline

- Review of small signal modeling
- Large signal considerations
- Application of V_{dsat} and ΔV analysis to CMOS subcircuits
A Common Source Amplifier

Review

- What is the purpose of including M_2 and M_3?
- How do we calculate the gain of this amplifier?
Small Signal Analysis

- Plug in Thevenin equivalents of the different transistors
 - Why is the Thevenin model for M_2 absent in the above figure?
- Gain is readily calculated as

$$v_{out} = -g_{m1}(r_{o1}||r_{o3})v_{in}$$
Resulting Small Signal Amplifier Model

According to our small-signal analysis

- v_{out} equals zero when v_{in} equals zero
- We can vary v_{in} across an unlimited range and v_{out} is proportionally amplified

Is this reality?
In reality
- V_{out} is not zero for V_{in} equal to zero
- The range of V_{out} is bounded by the supply voltage
- The relationship between V_{in} and V_{out} is nonlinear
 - M_1 and M_3 enter into different regions of operation depending on the value of the output voltage

Key assumption in our small signal model
- Devices are in saturation

Examination of ΔV and V_{dsat} for Large Signal Analysis

\[
\Delta V = V_{GS} - V_T
\]

Overdrive Voltage: \(\Delta V = V_{GS} - V_T\)

- Strong inversion: \(\Delta V = \sqrt{\frac{2I_D L}{\mu_n C_{ox} W}}\)
- Weak inversion: \(\Delta V < 0\)

Saturation Voltage: \(V_{dsat}\)

- Strong inversion: \(V_{dsat} = \Delta V\)
- Weak inversion: \(V_{dsat} \approx 100 \text{ mV}\)
Define the linear range of the amplifier as the region within which both M_1 and M_3 are in the saturation region.
- Use V_{dsat} to define this range
- Note that this is an approximation for hand calculations
 - Curve is actually nonlinear even within this range

The key parameters in range calculations will be V_{dsat} and ΔV.
Example 2: Source Follower Circuit

- Small signal analysis follows from Thevenin modeling
- Over what input and output voltage range do we assume that the above model is reasonably accurate?
Calculation of Input and Output Range

- **Input range**
 - To keep M_1 and M_2 in saturation
 \[V_{in} > V_T + \Delta V_1 + V_{dsat2} \]
 - Supply constraint
 \[V_{in} < V_{dd} \]

- **Output range**
 \[V_{dsat2} < V_{out} < V_{dd} - (V_T + \Delta V_1) \]
Example 3: Common Gate Amplifier

- Small signal analysis follows from Thevenin model
 - Note: what is the relationship between i_{in} and V_{in}?
- Key questions for large signal analysis
 - What should V_{bias} be set to in order to maximize the output swing?
 - What is the resulting output swing?
Constraints on V_{bias} and Output Range

- To keep M_2 and M_4 in saturation
 \[V_{bias} - (V_T + \Delta V_1) > \max(V_{dsat2}, V_{dsat4}) \]
 \[\Rightarrow V_{bias} > V_T + \Delta V_1 + \max(V_{dsat2}, V_{dsat4}) \]

- To keep M_1 in saturation
 \[V_{out} - (V_{bias} - (V_T + \Delta V_1)) > V_{dsat1} \]
 \[\Rightarrow V_{out} > V_{bias} - (V_T + \Delta V_1) + V_{dsat1} \]
Calculation of Maximum Output Range

- **Minimum** V_{bias} allows the maximum output range

 $\Rightarrow V_{\text{bias}} = V_T + \Delta V_1 + \max(V_{\text{dsat}_2}, V_{\text{dsat}_4})$

- **Resulting output range**

 $V_{\text{bias}} - V_T < V_{\text{out}} < V_{\text{dd}}$

 $\Rightarrow V_{\text{dsat}_1} + \max(V_{\text{dsat}_2}, V_{\text{dsat}_4}) < V_{\text{out}} < V_{\text{dd}}$
Input Voltage Range of a Differential Amplifier

- Assume common-mode operation (i.e., $V_{in+} = V_{in-}$)
 - M_4 should remain in saturation
 \[\Rightarrow V_{in+} > V_T + \Delta V_1 + V_{dsat4} \]
 - M_1 (and M_2) should remain in saturation
 \[\Rightarrow V_{in+} < V_{dd} - I_{d1}R_1 + V_T + \Delta V_1 - V_{dsat1} \]
- How about differential-mode operation?
Small Signal Analysis of Differential Amplifier

- Key relationship is that between output current and input voltage
- Using the half-circuit technique

\[-i_{d1} = g_{m1} \frac{v_{id}}{2} \text{ (for } R_L \ll r_{o1}) \quad i_{d2} = -g_{m2} \frac{v_{id}}{2} \text{ (for } R_L \ll r_{o2})\]

- What is the large signal behavior for differential operation?
Large Signal Behavior of Differential-Mode Operation

- **Note:** above analysis assumes strong inversion
 - Problem Set 2 will consider weak inversion
Large Signal Analysis of Current Mirrors

- **Note**: above analysis assumes strong inversion
- Is accurate for weak inversion as well

\[
\frac{I_2}{I_1} = \frac{1}{2} \mu_n C_{ox} \frac{W_2}{L_2} \left(V_{GS2} - V_{T2} \right)^2 (1 + \lambda_2 V_{ds2}) + \frac{\Delta V_2}{\Delta V_1} \left(V_{GS2} - V_{T2} \right)^2 (1 + \lambda_2 V_{ds2})
\]

\[
\frac{I_2}{I_1} = \frac{1}{2} \mu_n C_{ox} \frac{W_1}{L_1} \left(V_{GS1} - V_{T1} \right)^2 (1 + \lambda_1 V_{ds1}) + \frac{\Delta V_1}{\Delta V_2} \left(V_{GS1} - V_{T1} \right)^2 (1 + \lambda_1 V_{ds1})
\]

But, \(V_{T} + \Delta V_1 = V_{T} + \Delta V_2 \) \(\Rightarrow \Delta V_1 = \Delta V_2 \)

\[
\frac{I_2}{I_1} = \frac{W_2}{W_1} \frac{L_1}{L_2} \left(1 + \lambda_2 V_{ds2} \right) \left(1 + \lambda_1 V_{ds1} \right)
\]

Mismatch due to \(V_{ds} \)**difference**

Current setting based on geometry

Note: for accurate ratio, set \(L_1 = L_2 \)
Small Signal Analysis of Current Mirrors

- **Relationship between** i_1 **and** i_2 (ignoring r_{o2})

\[
i_2 = \frac{g_{m2}}{g_{m1}} i_1 \approx \frac{\sqrt{2\mu n C_{ox}(W_2/L_2)} I_2}{\sqrt{2\mu n C_{ox}(W_1/L_1)} I_1} i_1 \quad \text{or} \quad \frac{qI_2/(nkT)}{qI_1/(nkT)} i_1
\]

- **Strong Inv.**

- **Assuming** $L_1 = L_2$

\[
i_2 \approx \frac{W_2}{W_1} i_1
\]

- **Weak Inv.**

- **How is this analysis useful?**

M.H. Perrott © 2003
Consider A Simple Current Source

- Current is set by four variables (assume $L_1 = L_2$)
 - V_{dd}, V_{gs1}, R_{bias}, W_2/W_1
- Bias calculations

\[
I_1 = \frac{V_{dd} - V_{gs1}}{R_{bias}} = \frac{V_{dd} - (V_T + \Delta V_1)}{R_{bias}}
\]

- But ΔV_1 depends on I_1, so must solve this iteratively
- Issue – it’s desirable to have current be independent of supply voltage
Impact of Supply Variations on Simple Current Source

- Analyze using small signal model

\[i_2 = \frac{g_{m2}}{g_{m1}} i_1 \approx \frac{W_2}{W_1} i_1 = \frac{W_2}{W_1} R_{bias} + \frac{v_{dd}}{1/g_{m1}} \]

- The simple current source is extremely sensitive to supply variations!
Suppose We Made I_1 a Current Source?

- Much less sensitive to supply voltage variations
 - $R_{bias} = r_o$ is now quite large
- So, for robust biasing
 - The trick is to make a nice current source and then ship it to other circuits using current mirrors
 - We will discuss this issue in more detail in the context of bandgap references
The Issue of V_{ds} Mismatch in Current Mirrors

- **Issue:** Current I_2 can vary significantly as a function of the drain voltage of M_2
 - We often want a tightly controlled current set only by I_1 and transistor sizes
- **How do we improve the current mirror matching performance?**

$$\frac{I_2}{I_1} = \frac{W_2}{W_1} \frac{(1 + \lambda_2 V_{ds2})}{(1 + \lambda_1 V_{ds1})}$$

Mismatch due to V_{ds} difference

Current setting based on geometry

Note: we are assuming $L_1 = L_2$
Cascoded Current Sources

- Key transistor for determining \(I_2 \) is \(M_1 \)
 - Why is \(M_2 \) less important?
- Cascoding allows much closer match between \(V_{ds1} \) and \(V_{ds4} \) as drain voltage of \(M_2 \) is varied
 - Current \(I_2 \) is much better controlled
How does the above model allow you to infer that I_2 is more sensitive to gate variations impacting M_1 than those impacting M_2?
The Drawback of Cascoding

- Output voltage range is reduced
- Can we improve the voltage range?
Improved Swing Cascode

- **Key idea:** set size of M_3 such that $V_{ds1} = V_{dsat1}$
 - Assuming strong inversion for M_1 and M_3
 \[
 \Delta V = \sqrt{\frac{2I_dL}{\mu nC_{ox}W}} \Rightarrow \alpha = \frac{1}{4}
 \]
 - Assuming weak inversion for M_1 and M_3
 \[
 V_{dsat1} \approx 100\text{mV}, \quad \frac{\Delta V_{gs}}{I_{dens}} \propto 100\text{mV/dec} \Rightarrow \alpha = \frac{1}{10}
 \]
Alternative Implementation of Improved Swing Cascode

- Set α as on previous slide
- Note: both implementations share a common problem
The Issue of Current Mismatch

- The improved swing approach causes a systematic mismatch between I_2 and I_1
 - Key issue: $V_{ds1} \neq V_{ds4}$

- Can we fix this problem?

Recall:

$$\frac{I_2}{I_1} = \frac{W_2}{W_1} \frac{(1 + \lambda_2 V_{ds2})}{(1 + \lambda_1 V_{ds1})}$$

Mismatch due to V_{ds} difference
Techniques to Reduce Current Mismatch

- Systematic mismatch between \(I_1 \) and \(I_2 \) is greatly reduced by using the above circuit (now \(V_{ds1} \approx V_{ds4} \))

- Additional techniques to reduce random mismatch between \(I_1 \) and \(I_2 \)
 - Set \(L_1 = L_4 >> L_{\text{min}} \)
 - Note: set \(L_2 = L_3 \approx L_{\text{min}} \) to lower area and capacitance
 - Set \(W_2/W_3 = I_2/I_1 \) so that \(\Delta V_2 = \Delta V_3 \)
Conclusion

- Analog circuit design involves both small signal and large signal modeling
 - Small signal modeling is limited by large signal considerations with respect to its accuracy
 - Hybrid-π model (basis of our Thevenin models) assumes that the respective MOS device is in saturation
 - Large signal modeling is simplified by utilizing V_{dsat} and ΔV analysis
 - Used to determine voltage ranges over which devices remain in saturation
 - Important in exploring issues of systematic mismatch in current mirrors