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Energy and
Noise

Revisited
• Constellation diagrams and SNR
• Bit error rate versus SNR
• Shannon Capacity Limit
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Review of Digital Modulation

• Transmitter sends discrete-valued signals over an 
analog communication channel

• Receiver samples recovered baseband signal
– Noise and ISI corrupt received signal

• Key techniques
– Properly design transmit and receive filters for low ISI
– Sample and slice received signals to detect symbols
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A Closer Look at the Transmitter

• Amplitude of I/Q transmit signals 
impact power of transmitted output
– Output power is limited due to FCC 

regulations within a given spectral band
– Low output power is desirable for 

portable applications to achieve long 
battery life
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A Constellation View of Transmitter

• Provides intuitive view of relationship between 
symbol separation and transmitted power
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A Constellation View of Receiver

• Provides an intuitive view of relationship between 
symbol separation, received signal power, and noise
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Impact of SNR on Receiver Constellation

• SNR influenced by transmitted power, distance 
between transmitter and receiver, and noise
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Impact of Increased Signal on Constellation

• Increase in received signal power leads to 
increased separation between symbols
– SNR is improved if noise level unchanged
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Probability Density
Function for Noise
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Probability Density
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Quantifying the Impact of Noise

• Minimum separation between symbols:  dmin
• PDF of noise:  zero mean Gaussian PDF

– Variance of noise sets the spread of the PDF
• Bit errors:  occur when noise moves a symbol by a 

distance more than dmin/2
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Impact of Reduced SNR

• Lower SNR leads to a reduced value for dmin

• Leads to a higher bit error rate
– Assumes noise variance is unchanged
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Impact of Symbol Reduction

• Reducing the number of symbols leads to an 
increased value for dmin

• Leads to a lower bit error rate
– Assuming SNR remains constant
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Can We Estimate Bit Error Rate?

• Bit Error Rate depends on:
– SNR

• Received signal power versus noise variance
– Number of constellation points

• Sets dmin at a given level of received signal power
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Let’s Start with a Detailed System View

• Assumptions:  No ISI, 4-point constellation
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A Closer Examination of Signal and Noise
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The Binary Symmetric Channel Model

• Provides a binary signaling model of channel
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Computation of SNR
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Bit Error Rate versus SNR for Q Channel

• Bit Error Rate = Pe

• SNR (dB) =

• Gaussian PDF for     
noise

Resulting Bit Error Rate Versus SNR

Note:
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Shannon Capacity

• In 1948, Claude Shannon proved that
– Digital communication can achieve arbitrary low bit-error-

rates if appropriate coding methods are employed
– The capacity of a Gaussian channel with bandwidth BW to 

support arbitrary low bit-error-rate communication is:
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Impact of Channel Bandwidth on Capacity

• An increase in bandwidth by a factor of 2 allows 
twice the number of bits to be sent in time T
– Capacity (bits/second) increases linearly with bandwidth
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Impact of SNR on Capacity

• A high SNR allows more bits to be sent per symbol
– Adding n bits requires adding 2n constellation points

• Adding n bits therefore leads to dmin being reduced by a 
factor of 2n

– Capacity increases logarithmically with SNR
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Constellation Design (Symbol Packing)

• Objective:  design constellation to maximize dmin
while packing as many points in as possible
– Maximizing dmin achieves lowest uncoded bit error rate
– Maximizing number of constellation points achieves highest 

uncoded data rate (bits/second)
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Summary
• Constellation diagrams allow intuitive approach of 

quantifying uncoded bit error rate of a channel
– Function of SNR and number of constellation points

• A digital communication channel can be viewed in 
terms of a binary signaling model
– Focuses attention on key issue of bit error rate

• Coding theoretically allows arbitrary low bit-error-
rate performance of a practical digital 
communication link
– We will dive more into this topic in the coming weeks….

• Next lecture:   Wrap Up
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