Energy and Noise Revisited

- $\boldsymbol{\cdot}$ Constellation diagrams and SNR
- Bit error rate versus SNR
- Shannon Capacity Limit

Copyright © 2007 by M.H. Perrott All rights reserved.

Review of Digital Modulation

- Transmitter sends discrete-valued signals over an analog communication channel
- Receiver samples recovered baseband signal
 - Noise and ISI corrupt received signal
- Key techniques
 - Properly design transmit and receive filters for low ISI
 - Sample and slice received signals to detect symbols

A Closer Look at the Transmitter

- Amplitude of I/Q transmit signals impact power of transmitted output
 - Output power is limited due to FCC regulations within a given spectral band
 - Low output power is desirable for portable applications to achieve long battery life

A Constellation View of Transmitter

 Provides intuitive view of relationship between symbol separation and transmitted power

M.H. Perrott@2007

A Constellation View of Receiver

 Provides an intuitive view of relationship between symbol separation, received signal power, and noise
M.H. Perrott@2007

Impact of SNR on Receiver Constellation

• SNR influenced by transmitted power, distance between transmitter and receiver, and noise

M.H. Perrott©2007

Impact of Increased Signal on Constellation

 Increase in received signal power leads to increased separation between symbols

- SNR is improved if noise level unchanged

Quantifying the Impact of Noise

- Minimum separation between symbols: d_{min}
- PDF of noise: zero mean Gaussian PDF
 - Variance of noise sets the spread of the PDF
- Bit errors: occur when noise moves a symbol by a distance more than $d_{\rm min}/2$

Impact of Reduced SNR

- · Lower SNR leads to a reduced value for d_{min}
- Leads to a higher bit error rate
 - Assumes noise variance is unchanged

Impact of Symbol Reduction

- Reducing the number of symbols leads to an increased value for d_{min}
- Leads to a lower bit error rate
 - Assuming SNR remains constant

Can We Estimate Bit Error Rate?

- Bit Error Rate depends on:
 - SNR
 - Received signal power versus noise variance
 - Number of constellation points
 - $\boldsymbol{\cdot}$ Sets \boldsymbol{d}_{min} at a given level of received signal power

Let's Start with a Detailed System View

Assumptions: No ISI, 4-point constellation

M.H. Perrott©2007

A Closer Examination of Signal and Noise

M.H. Perrott©2007

Computation of SNR

Resulting Bit Error Rate Versus SNR

M.H. Perrott@2007

Shannon Capacity

- In 1948, Claude Shannon proved that
 - Digital communication can achieve arbitrary low bit-errorrates if appropriate *coding* methods are employed
 - The capacity of a *Gaussian channel* with bandwidth *BW* to support arbitrary low bit-error-rate communication is:

$$C = BW \log_2(1 + SNR)$$
 bits/second

Impact of Channel Bandwidth on Capacity

- An increase in bandwidth by a factor of 2 allows twice the number of bits to be sent in time T
 - Capacity (bits/second) increases *linearly* with bandwidth

Impact of SNR on Capacity

- A high SNR allows more bits to be sent per symbol
 - Adding *n* bits requires adding 2ⁿ constellation points
 - Adding *n* bits therefore leads to d_{min} being *reduced* by a factor of 2^n

- Capacity increases logarithmically with SNR

Constellation Design (Symbol Packing)

- Objective: design constellation to maximize d_{min} while packing as many points in as possible
 - Maximizing d_{min} achieves lowest uncoded bit error rate
 - Maximizing number of constellation points achieves highest uncoded data rate (bits/second)

M.H. Perrott©2007

Summary

- Constellation diagrams allow intuitive approach of quantifying uncoded bit error rate of a channel
 - Function of SNR and number of constellation points
- A digital communication channel can be viewed in terms of a binary signaling model
 - Focuses attention on key issue of bit error rate
- Coding theoretically allows arbitrary low bit-errorrate performance of a practical digital communication link
 - We will dive more into this topic in the coming weeks....
- Next lecture: Wrap Up