Fourier Series and

Fourier Transform

- Complex exponentials
- Complex version of Fourier Series
- Time Shifting, Magnitude, Phase
- Fourier Transform

Copyright © 2007 by M.H. Perrott All rights reserved.

The Complex Exponential as a Vector

- Consider I and Q as the real and imaginary parts
- As explained later, in communication systems, I stands for in-phase and Q for quadrature
- As t increases, vector rotates counterclockwise
- We consider $e^{j w t}$ to have positive frequency

The Concept of Negative Frequency

- As t increases, vector rotates clockwise
- We consider $e^{-j w t}$ to have negative frequency
- Note: $A-j B$ is the complex conjugate of $A+j B$
- So, $e^{-j w t}$ is the complex conjugate of $e^{j w t}$

Add Positive and Negative Frequencies

- As t increases, the addition of positive and negative frequency complex exponentials leads to a cosine wave
- Note that the resulting cosine wave is purely real and considered to have a positive frequency

Subtract Positive and Negative Frequencies

- As t increases, the subtraction of positive and negative frequency complex exponentials leads to a sine wave
- Note that the resulting sine wave is purely imaginary and considered to have a positive frequency

Fourier Series

- The Fourier Series is compactly defined using complex exponentials

$$
\begin{aligned}
& x(t)=\sum_{n=-\infty}^{\infty} \hat{X}_{n} e^{j n w_{o} t} \\
& \hat{X}_{n}=\frac{1}{T} \int_{t_{o}}^{t_{o}+T} x(t) e^{-j n w_{o} t} d t
\end{aligned}
$$

- Where:

$$
w_{o}=\frac{2 \pi}{T} \quad \hat{X}_{n}=A_{n}+j B_{n}
$$

From The Previous Lecture

- The Fourier Series can also be written in terms of cosines and sines:

$$
x(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n w_{o} t\right)+b_{n} \sin \left(n w_{o} t\right)
$$

where for $n>0$:
$a_{n}=\frac{2}{T} \int_{t_{o}}^{t_{o}+T} x(t) \cos \left(n w_{o} t\right) d t, b_{n}=\frac{2}{T} \int_{t_{o}}^{t_{o}+T} x(t) \sin \left(n w_{o} t\right) d t$
and where : $\quad w_{o}=\frac{2 \pi}{T}, \quad a_{0}=\frac{1}{T} \int_{t_{o}}^{t_{o}+T} x(t) d t$

Compare Fourier Definitions

- Let us assume the following: $\quad \hat{X}_{n}=A_{n}+j B_{n}$

$$
A_{n}=A_{-n} \quad B_{n}=-B_{-n} \quad B_{0}=0
$$

- Then:

$$
\begin{aligned}
& x(t)=\sum_{n=-\infty}^{\infty} \hat{X}_{n} e^{j n w_{o} t}=\sum_{n=-\infty}^{\infty} A_{n} e^{j n w_{o} t}+\sum_{n=-\infty}^{\infty} j B_{n} e^{j n w_{o} t} \\
& =A_{0}+\sum_{n=1}^{\infty} A_{n}\left(e^{j n w_{o} t}+e^{-j n w_{o} t}\right)+\sum_{n=1}^{\infty} j B_{n}\left(e^{j n w_{o} t}-e^{-j n w_{o} t}\right) \\
& =A_{0}+\sum_{n=1}^{\infty} 2 A_{n} \cos \left(n w_{o} t\right)+\sum_{n=1}^{\infty}-2 B_{n} \sin \left(n w_{o} t\right)
\end{aligned}
$$

- So:

$$
A_{0}=a_{0}
$$

$$
2 A_{n}=a_{n}
$$

$$
-2 B_{n}=b_{n}
$$

Square Wave Example

$$
\begin{aligned}
& \hat{X}_{n}=\frac{1}{T} \int_{t_{o}}^{t_{o}+T} x(t) e^{-j n w_{o} t} d t \\
& =\frac{1}{T} \int_{-T / 2}^{0}-A e^{-j n w_{o} t} d t+\frac{1}{T} \int_{0}^{T / 2} A e^{-j n w_{o} t} d t \\
& =\frac{1}{T} \frac{-A}{-j n w_{o}}\left(1-e^{j n w_{o} T / 2}\right)+\frac{1}{T} \frac{A}{-j n w_{o}}\left(e^{-j n w_{o} T / 2}-1\right) \\
& =\frac{1}{T} \frac{2 A}{j n w_{o}}\left(1-\cos \left(n w_{o} T / 2\right)\right)=-j \frac{A}{n \pi}(1-\cos (n \pi)) \\
& \text { Fourier Series ond Furier Tronsform, Side } 9
\end{aligned}
$$

Graphical View of Fourier Series

- As in previous lecture, we can plot Fourier Series coefficients
- Note that we now have positive and negative values of n
- Square wave example:
$\hat{X}_{n}=A_{n}+j B_{n}=-j \frac{A}{n \pi}(1-\cos (n \pi))=\left\{\begin{array}{cl}0 & (\text { even } n) \\ j \frac{-2 A}{n \pi} & (\text { odd } n)\end{array}\right.$

Indexing in Frequency

- A given Fourier coefficient, \hat{X}_{n}, represents the weight corresponding to frequency $n w_{0}$

$$
x(t)=\sum_{n=-\infty}^{\infty} \hat{X}_{n} e^{j n w_{o} t}
$$

- It is often convenient to index in frequency (Hz)

$$
n w_{o}=2 \pi\left(n f_{o}\right)=2 \pi\left(n \frac{1}{T}\right)
$$

The Impact of a Time (Phase) Shift

- Consider shifting a signal $x(t)$ in time by T_{d}

$$
\hat{Y}_{n}=\frac{1}{T} \int_{t_{o}}^{t_{o}+T} x\left(t-T_{d}\right) e^{-j n w_{o} t} d t
$$

- Define:

$$
\tau=t-T_{d} \Rightarrow d \tau=d t
$$

- Which leads to: $\hat{Y}_{n}=\frac{1}{T} \int_{t_{o}+T_{d}}^{t_{o}+T+T_{d}} x(\tau) e^{-j n w_{o}\left(\tau+T_{d}\right)} d \tau$ $=e^{-j n w_{o} T_{d}}\left(\frac{1}{T} \int_{t_{o}}^{t_{o}+T} x(\tau) e^{-j n w_{o} \tau} d \tau\right)=e^{-j n w_{o} T_{d}} \hat{X}_{n}$

Square Wave Example of Time Shift

- To simplify, note that $\hat{X}_{n}=0$ except for odd n

Graphical View of Fourier Series

Magnitude and Phase

- We often want to ignore the issue of time (phase) shifts when using Fourier analysis
- Unfortunately, we have seen that the A_{n} and B_{n} coefficients are very sensitive to time (phase) shifts
- The Fourier coefficients can also be represented in term of magnitude and phase

$$
\hat{X}_{n}=A_{n}+j B_{n}=\left|\hat{X}_{n}\right| e^{j \Phi_{n}}
$$

- where:

$$
\left|\hat{X}_{n}\right|=\sqrt{A_{n}^{2}+B_{n}^{2}} \quad \Phi_{n}=\tan ^{-1}\left(\frac{B_{n}}{A_{n}}\right)
$$

Graphical View of Magnitude and Phase

Does Time Shifting Impact Magnitude?

- Consider a waveform $x(t)$ along with its Fourier Series

$$
x(t) \Leftrightarrow \hat{X}_{n}
$$

- We showed that the impact of time (phase) shifting $x(t)$ on its Fourier Series is

$$
x\left(t-T_{d}\right) \Leftrightarrow e^{-j n w_{o} T_{d}} \hat{X}_{n}
$$

- We therefore see that time (phase) shifting does not impact the Fourier Series magnitude

$$
\left|e^{-j n w_{o} T_{d}} \hat{X}_{n}\right|=\left|e^{-j n w_{o} T_{d}}\right|\left|\hat{X}_{n}\right|=\left|\hat{X}_{n}\right|
$$

Parseval's Theorem

- The squared magnitude of the Fourier Series coefficients indicates power at corresponding frequencies
- Power is defined as: $\frac{1}{T} \int_{t_{o}}^{t_{o}+T} x^{2}(t) d t$

$$
\frac{1}{T} \int_{t_{o}}^{t_{o}+T} x^{2}(t) d t=\frac{1}{T} \int_{t_{o}}^{t_{o}+T} x(t) \sum_{n=-\infty}^{\infty} \hat{X}_{n} e^{j n w_{o} t} d t
$$

Note:

* means complex

$$
=\sum_{n=-\infty}^{\infty} \hat{X}_{n} \frac{1}{T} \int_{t_{o}}^{t_{o}+T} x(t) e^{j n w_{o} t} d t
$$ conjugate

The Fourier Transform

- The Fourier Series deals with periodic signals

$$
\begin{aligned}
& x(t)=\sum_{n=-\infty}^{\infty} \hat{X}_{n} e^{j n w_{o} t} \\
& \hat{X}_{n}=\frac{1}{T} \int_{t_{o}}^{t_{o}+T} x(t) e^{-j n w_{o} t} d t
\end{aligned}
$$

- The Fourier Transform deals with non-periodic signals

$$
\begin{aligned}
x(t) & =\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f \\
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
\end{aligned}
$$

Fourier Transform Example

- Note that $x(t)$ is not periodic
- Calculation of Fourier Transform:

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \\
& =\int_{-T}^{T} A e^{-j 2 \pi f t} d t=\left.\frac{A}{-j 2 \pi f} e^{-j 2 \pi f t}\right|_{-T} ^{T} \\
& =\frac{A \sin (2 \pi f T)}{\pi f}
\end{aligned}
$$

Graphical View of Fourier Transform

$$
X(f)=\frac{A \sin (2 \pi f T)}{\pi f}
$$

This is called
 a sinc function

Summary

- The Fourier Series can be formulated in terms of complex exponentials
- Allows convenient mathematical form
- Introduces concept of positive and negative frequencies
- The Fourier Series coefficients can be expressed in terms of magnitude and phase
- Magnitude is independent of time (phase) shifts of $x(t)$
- The magnitude squared of a given Fourier Series coefficient corresponds to the power present at the corresponding frequency
- The Fourier Transform was briefly introduced
- Will be used to explain modulation and filtering in the upcoming lectures
- We will provide an intuitive comparison of Fourier Series and Fourier Transform in a few weeks ...

