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Open Loop Versus Closed Loop Amplifier Topologies

 Open loop – want all bandwidth limiting poles to be as 
high in frequency as possible

 Closed loop – want one pole to be dominant and all other 
parasitic poles to be as high in frequency as possible
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Consider an Open Loop Integrator

 Parameterize integrator in terms of its unity gain 
frequency, wunity rad/s
- Define H(s) = wunity/s- Note that |H(wunity)| = 1
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Now Surround the Integrator with a Feedback Path

 The feedforward path is H(s) = wunity/s
 The feedback path is formed by Z1 and Z2

 Derivation of closed loop transfer function:
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Observations of Impact of Feedback

 Define  = Z1/(Z1+Z2) and rewrite transfer function as:

 At low frequencies:            At high frequencies:
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General View of Feedback

 Closed loop transfer function:

- This is called Black’s formula
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 The feedback path sets the closed loop gain at low 
frequencies
- Assumes the open loop gain is large at low frequencies
- Implies that accurate closed loop gain can be achieved 

at low frequencies despite variations in open loop gain
 The feedback path also influences the closed loop 

bandwidth
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 The low frequency gain is:

 The bandwidth roughly corresponds to:
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 The low frequency gain is:

 The bandwidth roughly corresponds to:

 Gain bandwidth product is wunity:  
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 Let us now model H(s) as:

 To first order, the closed loop bandwidth and gain are 
relatively unchanged
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Issue:  Open Loop Amplifiers have Finite DC Gain
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H(s) =
K

1 + s/wdominant

 For unity gain configuration of closed loop amplifier:

 We see that finite open loop DC gain leads to a slight 
reduction of the closed loop DC gain
- We want K >> 1 for the unity gain closed loop amplifier
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Further Examination of Finite, Open Loop, DC Gain

11

Vout
Vin

=
H(s)

1 +H(s)

¯̄̄̄
Vout
Vin

¯̄̄̄
s→0

=
H(s)

1 +H(s)

¯̄̄̄
s→0

=
K

1 +K
=

1

1 + 1/K



M.H. Perrott

H(s) =
K

1 + s/wdominant

 For general configuration of closed loop amplifier:

 Finite open loop DC gain still leads to reduction of 
closed loop DC gain
- We want K >> 1/ in this case
- We will see implications of this issue later in the class
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 Practical amplifiers have non-dominant poles, too:

- Of course, there can be multiple parasitic poles and also 
zeros

 A key issue of such parasitic poles is their influence 
on the stability of the closed loop amplifier
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 We define the open loop response, A(s), as:

 Note that the unity gain frequency, w0 , of A(w) is 
approximately the same as the closed loop bandwidth, wbw

- Looking at the plot above, we can see that the intersection of 
|H(w)| and 1/ corresponds to the closed loop bandwidth, wbw

|A(w0)| = 1 ⇒ β · |H(w0)| = 1 ⇒ |H(w0)| = 1/β
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Key Tool for Assessing Stability:  Open Loop Response
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Stability Analysis Based on Phase Margin of A(w)

 Phase margin is a key metric when examining the 
stability of a system
- Phase margin is defined as 180° + phase{A(w0)} 

 w0 corresponds to the unity gain frequency of the open 
loop response (i.e., |A(w0)| = 1)

 w0 is approximately the same as the closed loop 
bandwidth, wbw- Phase margin must be greater than 0 degrees for the 

closed loop system to be stable
 Typically want phase margin to be greater than 45°

 Key skill:  you must be able to plot Bode plots in both 
magnitude and phase!
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Review of Bode Plot Basics

 Example:

- Log of magnitude (dB): 

 Taking the log allows the poles and zeros to be plotted 
separately and then added together

- Phase:  

 Phase of poles and zeros can also be plotted separately 
and then added together
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Review: Plotting the Magnitude of Poles

 Plot the magnitude response of pole wp1

- For w << wp1:  

- For w >> wp1:   
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Plotting the Phase of Poles

 Plot the phase response of pole wp1

- For w << wp1:  

- For w = wp1:

- For w >> wp1:   
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Review: Plotting the Magnitude of Zeros

 Plot the magnitude response of zero wz

- For w << wz:  

- For w >> wz:    
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Plotting the Phase of Zeros

 Plot the phase response of zero wz

- For w << wz:  

- For w = wz:

- For w >> wz:    
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Example of Closed Loop Stability Evaluation

 Consider the case where:

- This implies that:
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Phase Margin Versus Open Loop Gain

 Note the closed loop pole locations versus open loop gain
- Is the closed loop system unstable for any case above?
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Corresponding Closed Loop Behavior

 Frequency response sees more peaking with higher open 
loop gain
- How does this relate to the movement of the closed loop pole 

locations?
 Step response see more ringing with higher open loop gain

- How does this relate to the closed loop frequency response? 
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Some Key Observations

 We have seen that increasing the open loop gain of A(w)
leads to higher closed loop bandwidth
- How is this consistent with the statement that increasing 

closed loop gain leads to lower closed loop bandwidth?
 As an exercise, consider the impact of the following:

- Keep  unchanged and increase the open loop gain of H(w)
- Keep H(w) unchanged and increase 
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Example 2 of Closed Loop Stability Evaluation

 Consider the case where:

- This implies that:
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Phase Margin Versus Open Loop Gain

 Note the closed loop pole locations versus open loop gain
- Is the closed loop system unstable for any case above?
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Corresponding Closed Loop Behavior

 Frequency response again sees more peaking with higher 
open loop gain
- How does this relate to the movement of the closed loop pole 

locations?
 Step response ringing grows for high open loop gain

- How does this relate to the closed loop pole locations? 
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Open Loop Versus Closed Loop Amplifier Topologies

 Now that we understand the phase margin criterion, can 
you explain why amplifiers designed to be within a closed 
loop system should have one dominant pole that is much 
lower in frequency than the parasitic poles?
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Summary

 Feedback systems offer the benefit of accurate gain at 
low frequencies
- Assumes accurate feedback and high open loop DC gain
- Gain-bandwidth product of the closed loop system 

equals wunity of the open loop amplifier
 Accuracy of the closed loop DC gain is reduced with 

lower open loop DC gain
- Want the open loop DC gain to be much higher than the 

desired closed loop DC gain for reasonable accuracy
 Stability of the closed loop system is often evaluated 

using the phase margin criterion
- Examines the phase at unity gain frequency of the open 

loop response, A(w0) =  · H(w0), where |A(w0)| = 1
 w0 is approximately the same as the closed loop 

bandwidth, wbw


