Analysis and Design of Analog Integrated Circuits Lecture 2

Two-Port Models, Frequency Response

Michael H. Perrott January 25, 2011

Copyright © 2012 by Michael H. Perrott All rights reserved.

M.H. Perrott

Review: Basics of One-Port Modeling

- V_{th} computed as open circuit voltage at port nodes
- I_{th} computed as short circuit current across port nodes
- Z_{th} computed as V_{th}/I_{th}
 - All independent voltage and current sources are set to zero value

Basics of Two-Port Modeling (Unilateral)

We now include a dependent current or voltage source

Z_{in}

Solve using 1-Port analysis at input

Z_{out} Solve using 1-Port analysis at output with V₁ = 0

- G_M Short circuit output current as a function of V₁
 - Open circuit output voltage as a function of V₁

Analysis of Cascaded Blocks

M.H.

enut

Analysis carried out without solving simultaneous equations!

Problem: Most Circuits are Very Nonlinear!

Thevenin/Norton modeling only applies to linear networks

Direct analysis of nonlinear networks is challenging

Can we still leverage two-port modeling?

Small Signal Modeling Allows Us to Linearize

Small signal model is only valid about a specific operating point

Small Versus Large Signal Modeling

Sketch V_{out} versus V_{in} as the amplitude of V_{in} is increased

Impact of Operating Point on Small Signal Modeling

Sketch V_{out} versus V_{in} as the DC operating point is changed

Achieving a Small Signal Model

Create a two port model of the above block

Including Impedances in Two-Port Models

Compute V_{out} as a function of V_{in}

Example of Two-Port Derivation

M.H. Perrott

Frequency Domain Modeling of Impedances

Determine Laplace Transform of Impedances Below:

Example: Transfer Function of Two-Port Circuit

- Derive the transfer function V_{out}(s)/V_{in}(s)
- Label the poles and zeros of the transfer function

Frequency Response

- Frequency response is readily derived from a transfer function:
 - For w (rad/s), you substitute s = jw
 - For f (Hz), you substitute $s = j2\pi f$
 - Note that *j* = sqrt(-1)
- Example, for the transfer function on the previous page, the frequency response (in f (Hz)) is:

Bode Plot Basics

- The magnitude and phase of the frequency response is often depicted in the form of a Bode plot
- Example: $H(w) = \frac{V_{out}(w)}{V_{in}(w)} = \frac{1+jw/w_z}{(1+jw/w_{p1})(1+jw/w_{p2})}$
 - **Log of magnitude (dB):** $20 \log |H(w)|$

 $= 20 \log |1 + jw/w_z| - 20 \log |1 + jw/w_{p1}| - 20 \log |1 + jw/w_{p2}|$

- Taking the log allows the poles and zeros to be plotted separately and then added together
- **Phase:** $\angle H(w)$

$$= \angle (1 + jw/w_z) - \angle (1 + jw/w_{p1}) - \angle (1 + jw/w_{p2})$$

 Phase of poles and zeros can also be plotted separately and then added together

Plotting the Magnitude of Poles

Plot the magnitude response of pole w_{p1}

$$20\log|H(w)| = 20\log\left|\frac{1}{1+jw/w_{p1}}\right| = -20\log|1+jw/w_{p1}|$$

- **For w << w**_{p1}: $20 \log |H(w)| \approx -20 \log |1| = 0$
- **For w >> w_{p1}:** $20 \log |H(w)| \approx -20 \log |w/w_{p1}|$

Plotting the Magnitude of Zeros

Plot the magnitude response of pole w_z

$$20\log|H(w)| = 20\log|1 + jw/w_z|$$

- **For w << w_z:** $20 \log |H(w)| \approx 20 \log |1| = 0$
- **For w >> w_z:** $20 \log |H(w)| \approx 20 \log |w/w_z|$

M.H. Perrott

Example Frequency Response:

$$H(w) = \frac{V_{out}(w)}{V_{in}(w)} = \frac{1 + jw/w_z}{(1 + jw/w_{p1})(1 + jw/w_{p2})}$$

Assume w_z << w_{p1} << w_{p2}

What happens if w_{p1} << w_z << w_{p2}?

Changing the Order of Poles and Zeros

Example Frequency Response:

$$H(w) = \frac{V_{out}(w)}{V_{in}(w)} = \frac{1 + jw/w_z}{(1 + jw/w_{p1})(1 + jw/w_{p2})}$$

Changing the DC Gain from 1 to K

Example Frequency Response:

