Analysis and Design of Analog Integrated Circuits Lecture 22

Digital to Analog Conversion

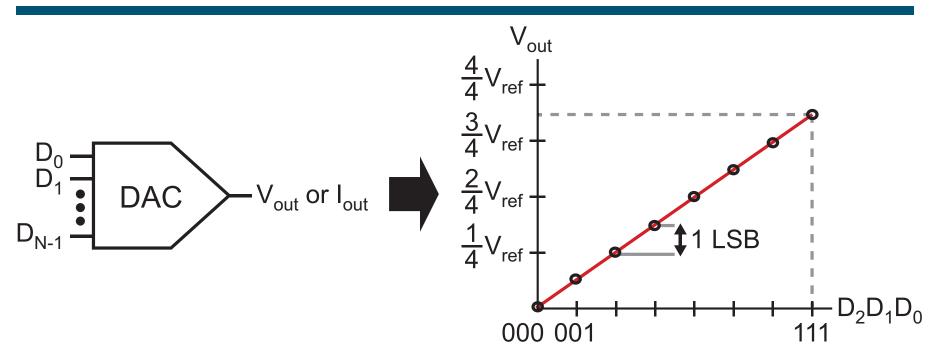
Michael H. Perrott April 22, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

Outline of Lecture

- Basic DAC Specifications
- Types of DACs (Resistive, Current, Capacitive)
- Impact of dynamic operation (NRZ, RZ)
- Sigma-Delta operation for high resolution

Digital to Analog Conversion

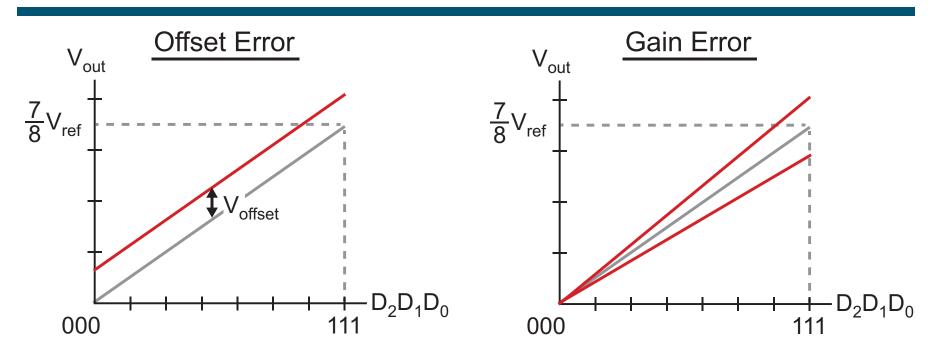


- Digital input consists of bits, D_k, with values 0 or 1
- Analog output is either voltage or current

$$V_{out} = \frac{V_{ref}}{2^N} (2^{N-1}D_{N-1} + 2^{N-2}D_{N-2} + \dots + 2^1D_1 + 2^0D_0)$$

- Key characteristics
 - Full scale = V_{ref}
 - Resolution = $V_{ref}/2^N = 1$ LSB

Gain and Offset Errors

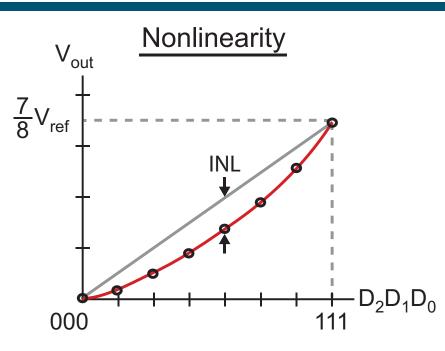


Offset is most easily characterized as

$$V_{offset} = V_{out}|_{D_k=0}$$

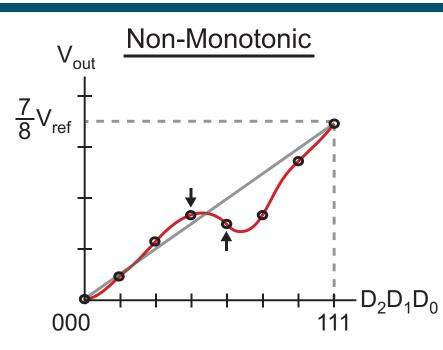
- Gain error is characterized either as
 - Error at full scale (in LSBs)
 - Percentage of full scale

Nonlinearity



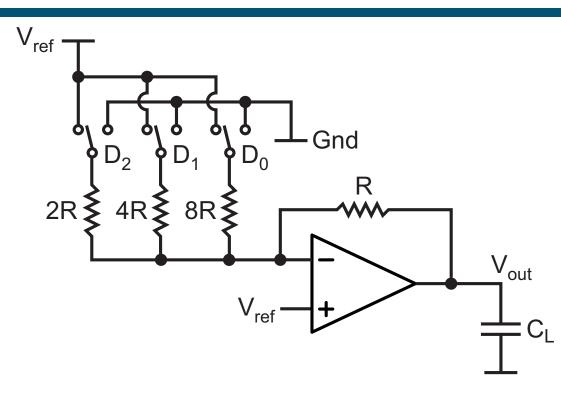
- Integral Non-Linearity (INL)
 - Maximum deviation from the "ideal line" characterisitic
 - Typically specified in units of LSBs
- Differential Non-Linearity (DNL)
 - Maximum deviation of all codes from their ideal step size of 1 LSB

Monotonicity



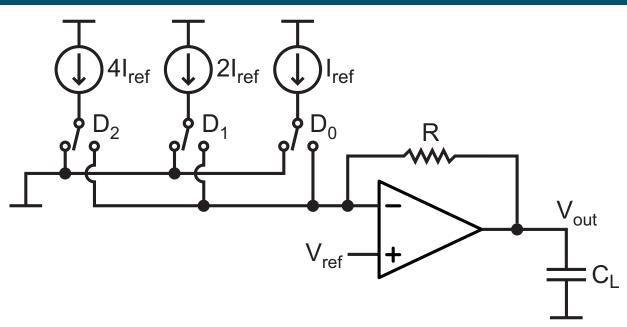
- Monotonic behavior requires that stepping any code to the next code yields a step in the output that is always the same sign
 - Important in systems which utilize the D/A converter as part of a feedback
 - Non-monotonicity yields changes in the sign of the gain, which can lead to small signal stability problems

Binary Resistor DAC



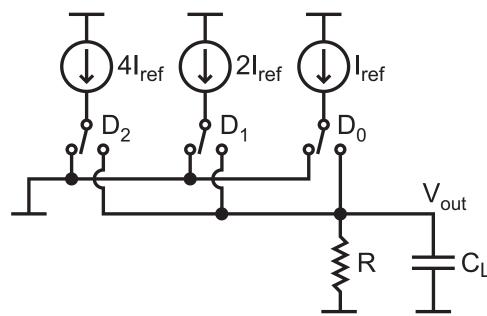
- Relies on accurate resistor ratios for good INL/DNL
- Issues
 - Switches contribute resistance
 - Can impact accuracy without clever design measures
 - Resistors require significant area for a high resolution DAC

Binary Current DAC



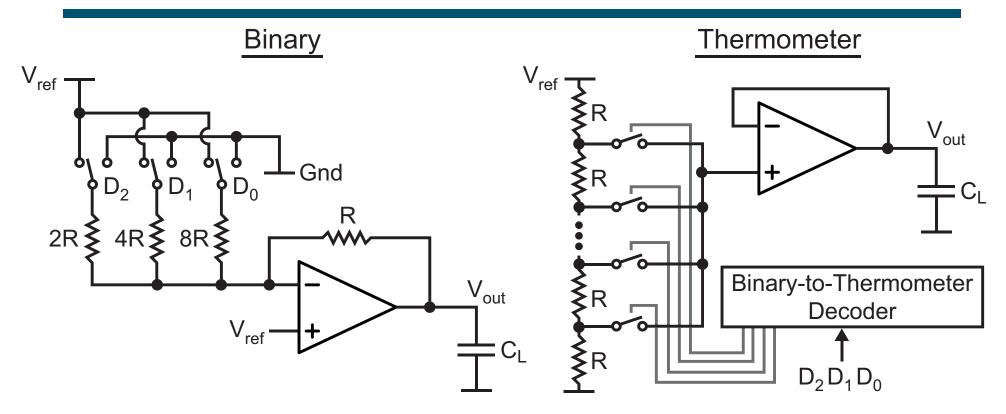
- Advantages
 - Switch resistance does not impact accuracy (to first order)
 - Scaled current sources are readily obtained using current mirror techniques
- Issues
 - Likely to have higher 1/f noise than resistor based DAC
 - Opamp limits bandwidth, adds noise

Binary Current DAC with Resistive Load



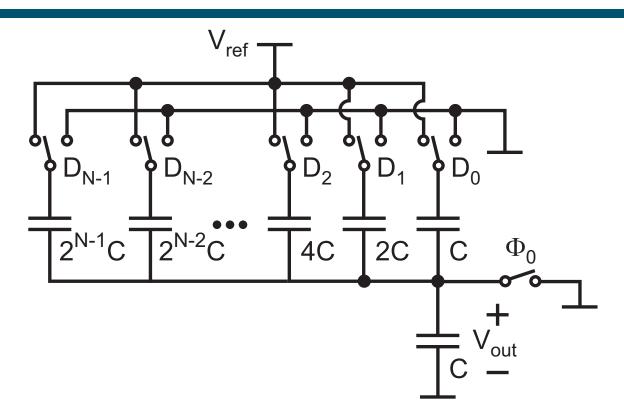
- No opamp required
 - Useful for high speed applications
- Issues
 - Current sources must now bear the full output range
 - Much harder to maintain constant current from them
 - Cascoding takes up headroom
 - Can lead to code dependent nonlinearity (i.e., poor INL, distortion)

Binary Versus Thermometer Encoding



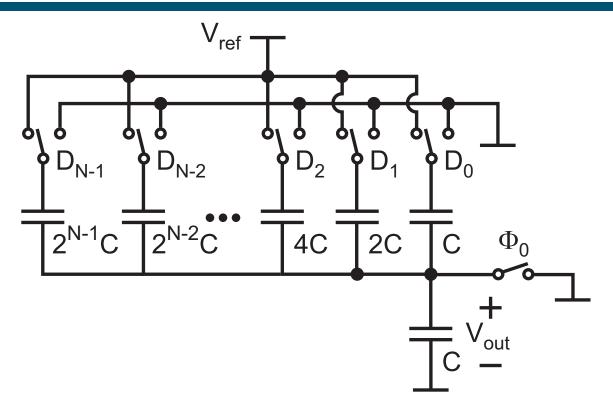
- Thermometer encoded resistor ladder provides inherently monotonic behavior
- Issues for high resolution
 - Decoding becomes very complex
 - Area can be quite large

Capacitor DAC



- Uses charge re-distribution on a capacitor network to realize output voltages
 - Key advantage is that capacitor matching is quite good in CMOS processes
 - Has become the preferred approach for low to modest speed discrete-time ADCs

Operational Details of Capacitor DAC

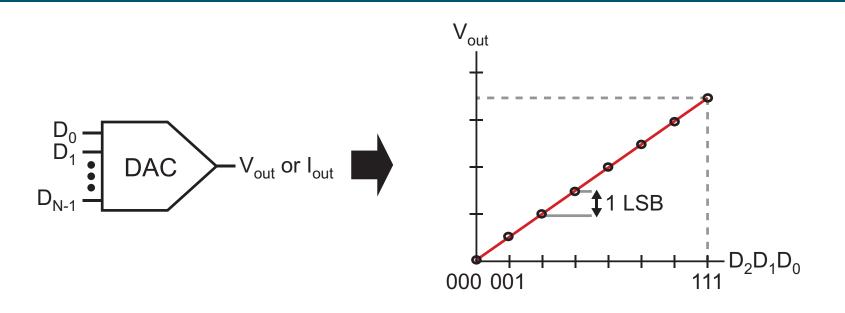


- First discharge all capacitors to zero ($D_k = 0, \Phi_0 = 1$)
- Set $P_0 = 0$ and then set D_k values

$$V_{out} = \frac{V_{ref}}{2^{N}C} \left(D_{N-1} 2^{N-1}C + D_{N-2} 2^{N-2}C^{N-2} + \dots + D_{1} 2C + D_{0}C \right)$$

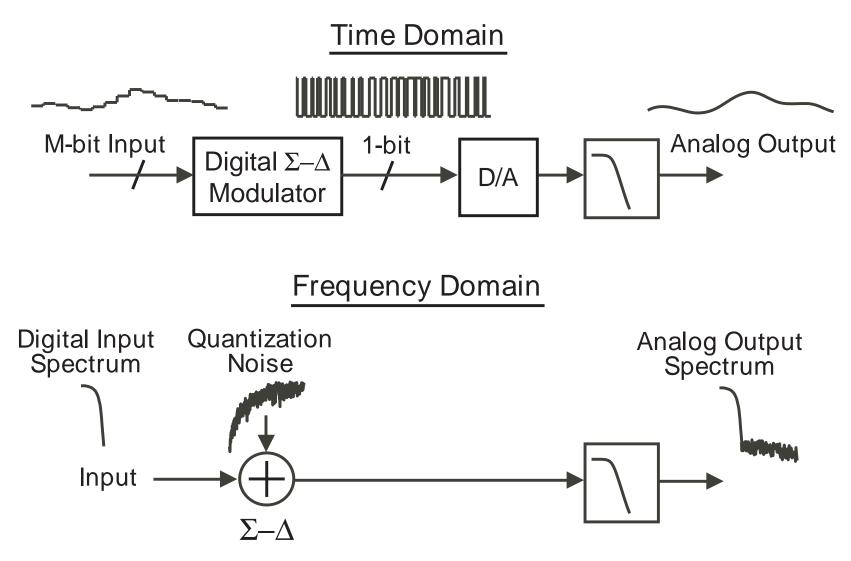
$$\Rightarrow V_{out} = \frac{V_{ref}}{2^{N}} \left(D_{N-1} 2^{N-1} + D_{N-2} 2^{N-2} + \dots + D_{1} 2 + D_{0} \right)$$

Seeking Higher Resolution



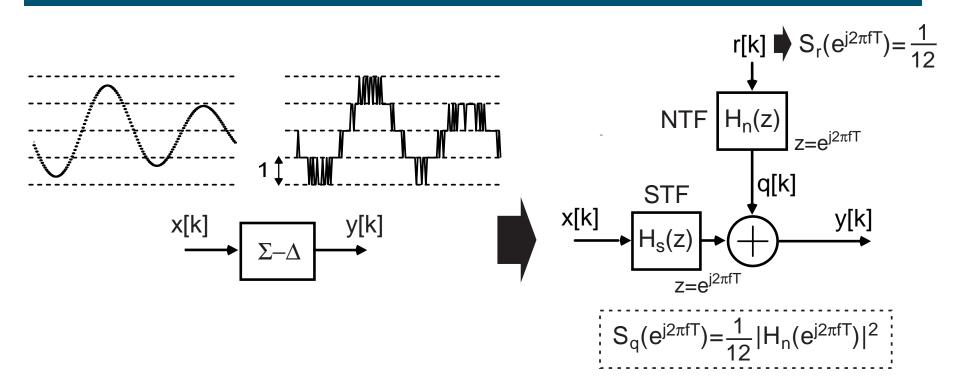
- Increasing the number of levels in the DAC achieves higher resolution at the cost of complexity and power
 - At some point, improved resolution becomes impractical with this approach
- An alternative approach is to consider dithering between levels of a coarse DAC
 - By averaging the output, we can obtain resolution finer than the LSB of the coarse DAC

Sigma-Delta Modulation



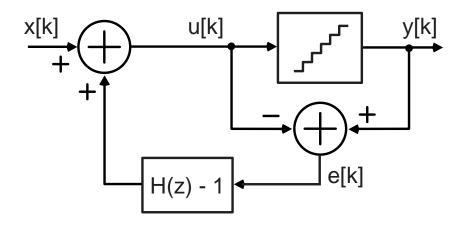
Sigma-Delta dithers in a manner such that resulting quantization noise is "shaped" to high frequencies

Linearized Model of Sigma-Delta Modulator



- Composed of two transfer functions relating input and noise to output
 - Signal transfer function (STF)
 - Filters input (generally undesirable)
 - Noise transfer function (NTF)
 - Filters (i.e., shapes) noise that is assumed to be white

Example: Cutler Sigma-Delta Topology

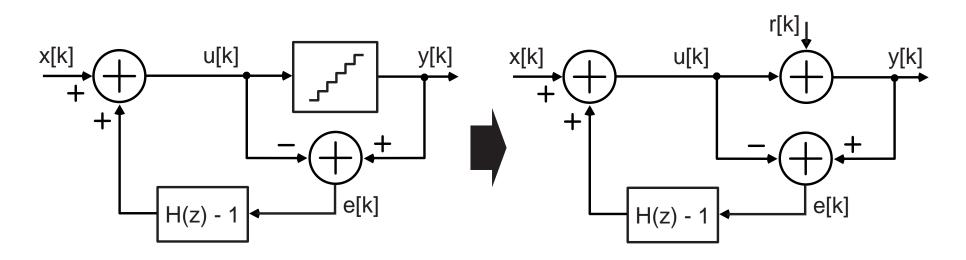


- Output is quantized in a multi-level fashion
- Error signal, e[k], represents the quantization error
- Filtered version of quantization error is fed back to input
 - H(z) is typically a highpass filter whose first tap value is 1

• i.e., $H(z) = 1 + a_1 z^{-1} + a_2 z^{-2} \cdots$

- H(z) 1 therefore has a first tap value of 0
 - Feedback needs to have delay to be realizable

Linearized Model of Cutler Topology



Represent quantizer block as a summing junction in which r[k] represents quantization error

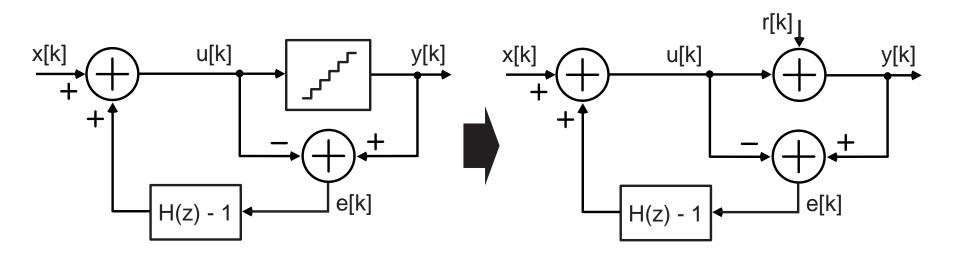
Note:

$$e[k] = y[k] - u[k] = (u[k] + r[k]) - u[k] = r[k]$$

It is assumed that r[k] has statistics similar to white noise

This is a key assumption for modeling – often not true!

Calculation of Signal and Noise Transfer Functions

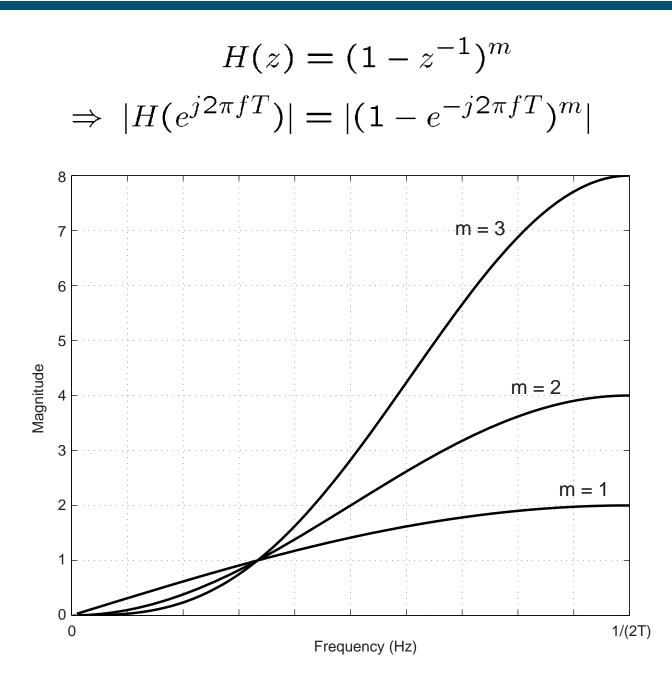


- Calculate using Z-transform of signals in linearized model Y(z) = U(z) + R(z)
 - = X(z) + (H(z) 1)E(z) + R(z)
 - = X(z) + (H(z) 1)R(z) + R(z)

$$= X(z) + H(z)R(z)$$

- **•** NTF: $H_n(z) = H(z)$
- **STF:** $H_s(z) = 1$

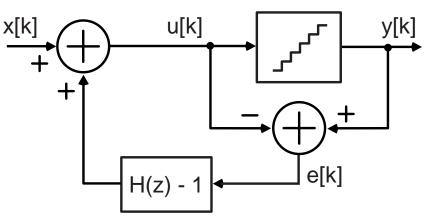
A Common Choice for H(z)



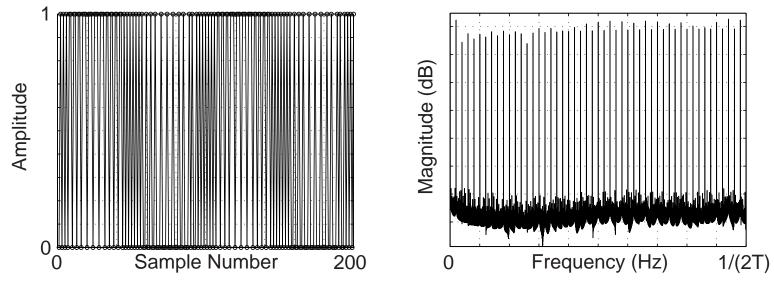
Example: First Order Sigma-Delta Modulator

Choose NTF to be

$$H_n(z) = H(z) = 1 - z^{-1}$$



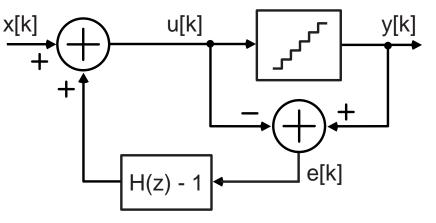
Plot of output in time and frequency domains with input of $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$



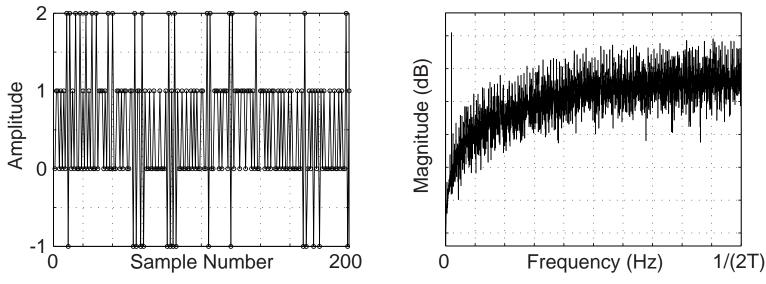
Example: Second Order Sigma-Delta Modulator

Choose NTF to be

$$H_n(z) = H(z) = (1 - z^{-1})^2$$



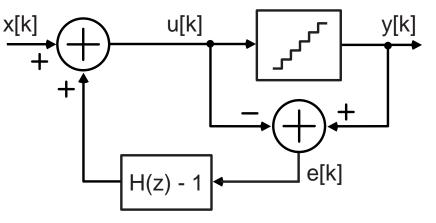
Plot of output in time and frequency domains with input of $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$



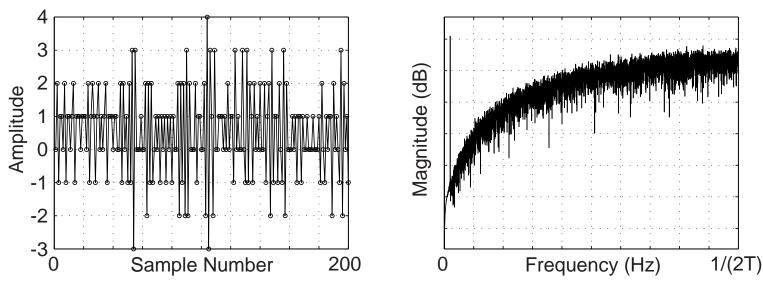
Example: Third Order Sigma-Delta Modulator

Choose NTF to be

$$H_n(z) = H(z) = (1 - z^{-1})^3$$



Plot of output in time and frequency domains with input of $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$

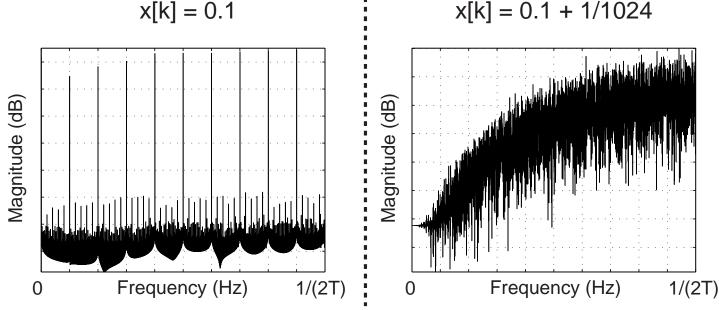


Observations

- Low order Sigma-Delta modulators do not appear to produce "shaped" noise very well
 - Reason: low order feedback does not properly "scramble" relationship between input and quantization noise
 - Quantization noise, r[k], fails to be white
- Higher order Sigma-Delta modulators provide much better noise shaping with fewer spurs
 - Reason: higher order feedback filter provides a much more complex interaction between input and quantization noise

Warning: Higher Order Modulators May Still Have Tones

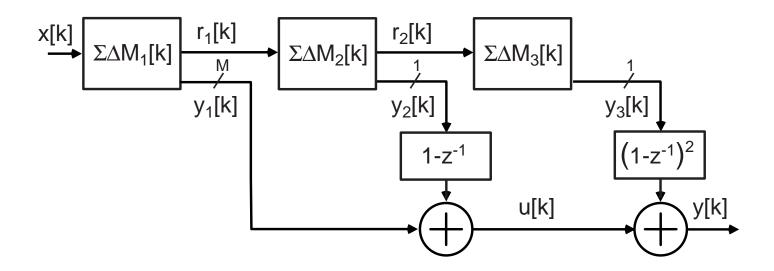
- Quantization noise, r[k], is best whitened when a "sufficiently exciting" input is applied to the modulator
 - Varying input and high order helps to "scramble" interaction between input and quantization noise
- Worst input for tone generation are DC signals that are rational with a low valued denominator
 - Examples (third order modulator with no dithering):



Fractional Spurs Can Be Theoretically Eliminated

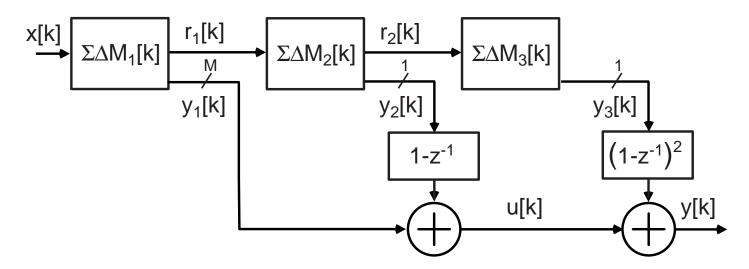
- See:
 - M. Kozak, I. Kale, "Rigorous Analysis of Delta-Sigma Modulators for Fractional-N PLL Frequency Synthesis", *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, vol. 51, no. 6, pp. 1148-1162
 - S. Pamarti, I. Galton, "LSB Dithering in MASH Delta– Sigma D/A Converters", *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 54, no. 4, pp. 779 – 790, April 2007.

MASH topology



- Cascade first order sections
- Combine their outputs after they have passed through digital differentiators
- Advantage over single loop approach
 - Allows pipelining to be applied to implementation
 - High speed or low power applications benefit

Calculation of STF and NTF for MASH topology (Step 1)



Individual output signals of each first order modulator

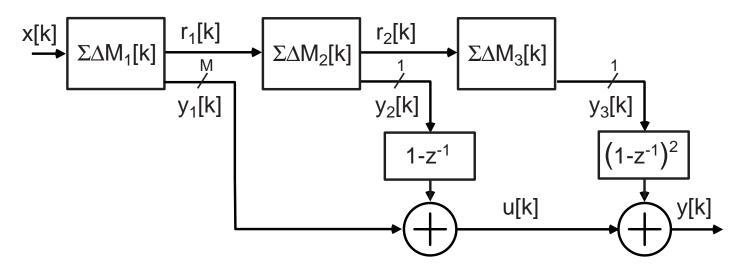
$$y_{1}(z) = x(z) - (1 - z^{-1})r_{1}(z)$$

$$y_{2}(z) = r_{1}(z) - (1 - z^{-1})r_{2}(z)$$

$$y_{3}(z) = r_{2}(z) - (1 - z^{-1})r_{3}(z)$$

$$\begin{array}{rcl} & & y_1(z) \\ + & (1-z^{-1})y_2(z) \\ + & (1-z^{-1})^2y_2(z) \\ \hline = & x(z) - (1-z^{-1})^3r_3(z) \end{array}$$

Calculation of STF and NTF for MASH topology (Step 1)

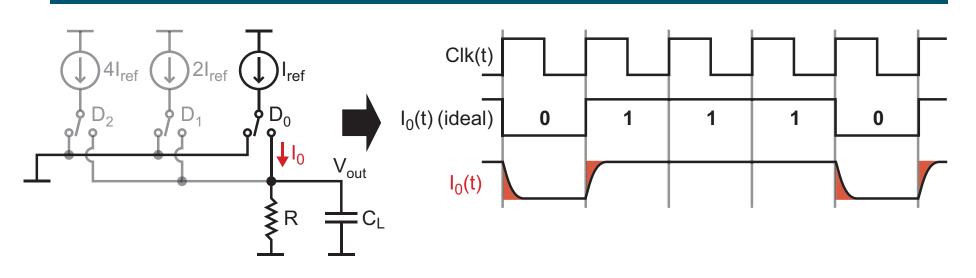


Overall modulator behavior

$$y(z) = x(z) - (1 - z^{-1})^3 r_3(z)$$

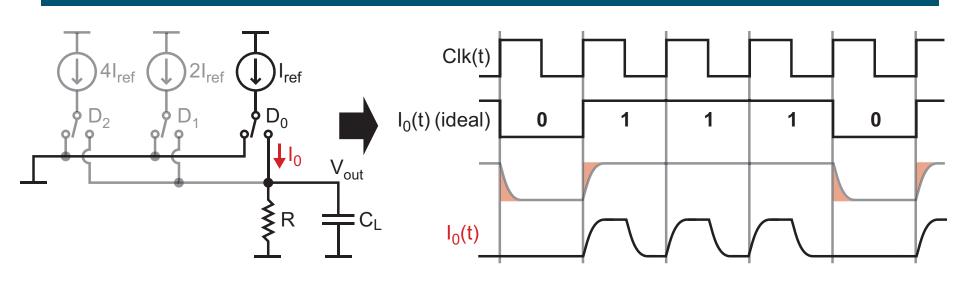
- **STF:** $H_s(z) = 1$
- NTF: $H_n(z) = (1 z^{-1})^3$

The Issue of Intersymbol Interference



- Dynamic operation of a non-return-to-zero (NRZ) DAC leads to inaccuracy due to transient effects
 - Transients only occur when the previous data is different
 - We refer to this data dependent error as intersymbol interference
- Intersymbol interference especially poses a problem when using the DAC for data communication

Return-to-Zero (RZ) Signaling



- Dynamic operation RZ DAC yields consistent results regardless of the pattern
 - Essentially, it inserts transients into every `1' value
- Issue half the signal swing is lost

Summary

- DAC structures can be implemented in a variety of ways
 - Resistors, currents, capacitors are all possible elements
 - Current-based DACS are the favorite for high frequency operation
 - Capacitor-based DACS are the favorite for low to modest frequency operation
- Key DAC specifications include offset, gain error, and non-linearity
 - Monotonocity is an import specification for DACs used within feedback loops
- Sigma-Delta modulators can be used to greatly increase the *effective* resolution of a DAC
- Dynamic operation of the DAC can lead to error due to intersymbol interference