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Outline of Lecture

 ADC Topologies
- Flash
- SAR
- Pipeline
- Interleaved
- Sigma-Delta

 Special focus on the emerging area of VCO-based 
ADCs
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Analog to Digital Conversion

 Analog input is typically voltage
 Digital output consists of bits, Dk, with values 0 or 1
 Key characteristics similar to DAC

- Full scale = Vref- Resolution = Vref/2N = 1 LSB
- Nonlinearity measured with INL, DNL, Monotonicity
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Flash ADC

 Fastest ADC structure (> 1 GHz)
- Performs direct comparison of an input signal to a set of 

voltage references using parallel comparators
- Typically limited to 8-bit resolution
- Relatively large area and power for higher resolution 4
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SAR ADC

 Leverages a DAC to sequentially compare its output 
values to the input voltage
- Minimal analog complexity - requires only one 

comparator and a capacitor DAC
- Successive Approximation Algorithm (SAR) is efficient 

comparison algorithm for comparing DAC to input value
- Has recently become very attractive in advanced CMOS 

for modest resolution (i.e., 8 to 10 bits) applications 5
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SAR Algorithm

 We can efficiently compare the DAC output to the 
input voltage, Vin, by successively subdividing the 
range from MSB to LSB
- Number of comparisons  ≈ number of bits

 Example:  10-bit SAR ADC requires roughly 10 
comparisons per sample
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Pipeline ADC

 Resolves ADC bits in several stages
- Earlier stages resolve MSB bits
- Calculate residue for later stages through subtraction of 

MSB estimate
 Amplify residue so that all stages operate over similar 

voltage ranges
 Pipeline trends

- 1-bit per stage in the past; now going to multi-bit per stage
- For advanced CMOS, interleaved SAR architectures are 

starting to look more attractive than pipelines
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Interleaved ADC

 Clocking several ADC structures 
at different clock phases allows 
much higher effective sample rate
- Can interleave Flash, SAR, or 

Pipeline ADCs
 Key challenges include clock 

skew, mismatch between ADCs, 
higher input capacitance
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Sigma-Delta ADC (Discrete-Time)

 Oversampled input
- Clock rate is much higher than bandwidth of input 

signal
 Noise shaped quantization noise

- Uses similar concepts as Sigma-Delta DAC considered 
in Lecture 22
 Leads to high effective precision despite having a coarse 

quantizer
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Sigma-Delta ADC (Continuous-Time)

 Similar to Discrete-Time, but important differences
- Sampler occurs after the filtering

 Allows removal of high frequency noise before sampling
- Only the quantizer and DAC need to settle during each 

sample
 Allows higher speed
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Time-to-Digital Conversion
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 Quantization in time achieved with purely digital gates
- Easy implementation, resolution improving with Moore’s law

How can we leverage this for quantizing an analog voltage?
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Adding Voltage-to-Time Conversion

 Analog voltage is converted into edge times
- Time-to-digital converter then turns the edge times into 

digitized values
 Key issues

- Non-uniform sampling
- Noise, nonlinearity

Naraghi, Courcy, Flynn, ISSCC 2009 
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Is there a simple implementation for
the Voltage-to-Time Converter?
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A Highly Digital ADC Implementation

 A voltage-controlled ring oscillator offers a simple 
voltage-to-time structure
- Non-uniform sampling is still an issue

We can further simplify this implementation and 
lower the impact of non-uniform sampling
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Making Use of the Ring Oscillator Delay Cells

 Utilize all ring oscillator outputs and remove TDC delays
- Simpler implementation

 TDC output now samples/quantizes phase state of oscillator
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Improving Non-Uniform Sampling Behavior

 Oscillator edges correspond to a sample window of the input
 Sampling the oscillator phase state yields sample windows 

that are much more closely aligned to the TDC clk  
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N-Stage Ring OscillatorVtune

Ref N-bit Register
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N XOR Gates

Adder

Out

N-Stage Ring OscillatorVtune

Sample 1

Sample 2

Sample 4

Sample 3

Multi-Phase Ring Oscillator Based Quantizer

 Adjustment of Vtune changes                                              
how many delay cells are visited                                             
by edges per Ref clock period
- Quantizer output corresponds to the number of delay cells 

that experience a transition in a given Ref clock period
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More Details …

 Choose large enough number of stages, N, such that 
transitions never cycle through a given stage more than once 
per Ref clock period
- Assume a high Ref clock frequency (i.e., 1 GHz)

 XOR operation on current and previous samples provides 
transition count
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Example:  Progression of

Vtune
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N-Stage Ring OscillatorVtune
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A First Step Toward Modeling

 VCO provides quantization, register provides sampling
- Model as separate blocks for convenience

 XOR operation on current and previous samples 
corresponds to a first order difference operation
- Extracts VCO frequency from the sampled VCO phase signal

Wismar, Wisland,
Andreani, ESSCIRC 2006
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VCO
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Corresponding Frequency Domain Model

 VCO modeled as integrator 
and Kv nonlinearity

 Sampling of VCO phase 
modeled as scale factor of 1/T

 Quantizer modeled as 
addition of quantization noise

 Key non-idealities:
- VCO Kv nonlinearity
- VCO noise
- Quantization noise
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Example Design Point for Illustration
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 Ref clk:  1/T = 1 GHz 
 31 stage ring oscillator

- Nominal delay per 
stage: 65 ps

 KVCO = 500 MHz/V
- 5% linearity

 VCO noise:  -100 dBc/Hz  
at 10 MHz offset
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SNR/SNDR Calculations with 20 MHz Bandwidth
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VCO Kv nonlinearity is
the key performance

bottleneck
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Classical Analog Versus VCO-based Quantization

 Much more digital implementation
 Offset and mismatch is not of critical concern
 Metastability behavior is potentially improved
 Improved SNR due to quantization noise shaping
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Implementation is high speed, low power, low area
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Key Performance Issues:  Nonlinearity and Noise

 Very hard to build a 
simple ring oscillator 
with linear Kv

 Noise floor set by VCO 
phase noise is typically 
higher than for analog 
amplifiers at same power 
dissipation
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VCO-based

Quantizer

Gain and
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Feedback Is Our Friend

 Issue:  must achieve a highly linear DAC structure
- Otherwise, noise folding and other bad things happen …

Iwata, Sakimura, TCAS II, 1999
Naiknaware, Tang, Fiez, TCAS II, 2000

 Combining feedback with                                    
front end gain acts to                             
suppress impact of quantizer                      
noise and nonlinearity
- Scale factor from input to                              

output is also better controlled
- Structure is a continuous-time Sigma-Delta ADC
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VCO-based
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1-Bit DACs

A Closer Look at the DAC Implementation

 Consider direct 
connection of the 
quantizer output to a 
series of 1-bit DACs
- Add the DAC outputs 

together

What is so special about doing this?
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VCO-based
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Recall that Ring Oscillator Offers Implicit Barrel Shifting

 Barrel shifting 
through delay 
elements
- Mismatch between 

delay elements is 
first order shaped
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VCO-based
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Implicit Barrel Shifting Applied to DAC Elements

 Barrel shifting action of 
quantizer transferred to 
1-bit DAC elements

Miller, US Patent (2004) 

- Acts to shape DAC mismatch and linearize its behavior
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First Generation Prototype

 Second order dynamics achieved with only one op-amp
- Op-amp forms one integrator
- Idac1 and passive network form the other (lossy) integrator
- Minor loop feedback compensates delay through quantizer

 Third order noise shaping is achieved!
- VCO-based quantizer adds an extra order of noise shaping
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Custom IC Implementing the Prototype
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Straayer, Perrott
VLSI 2007

 0.13u CMOS
 Power:  40 mW
 Active area:  700u X 700u
 Peak SNDR:  67 dB (20 MHz BW)
 Efficiency:  0.5 pJ/conv. step
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Measured Spectrum From Prototype
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Measured SNR/SNDR Vs. Input Amplitude (20 MHz BW)
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Summary

 ADC design is an active area of research
- Many topologies possible
- Much innovation is still ongoing, especially as new CMOS 

fabrication processes are introduced
 Key topologies

- Flash
- SAR
- Pipeline
- Sigma-Delta

 VCO-based ADCs are a new area of interest
- Take advantage of high speed of new CMOS processes
- Leverage digital circuits
- Can achieve good performance, but innovation still needed 


