Analysis and Design of Analog Integrated Circuits Lecture 23

Analog to Digital Conversion

Michael H. Perrott April 25, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

M.H. Perrott

Outline of Lecture

- ADC Topologies
 - Flash
 - SAR
 - Pipeline
 - Interleaved
 - Sigma-Delta
- Special focus on the emerging area of VCO-based ADCs

Analog to Digital Conversion

- Analog input is typically voltage
- Digital output consists of bits, D_k, with values 0 or 1
- Key characteristics similar to DAC
 - Full scale = V_{ref}
 - Resolution = V_{ref}/2^N = 1 LSB
 - Nonlinearity measured with INL, DNL, Monotonicity

Flash ADC

Fastest ADC structure (> 1 GHz)

- Performs direct comparison of an input signal to a set of voltage references using parallel comparators
- Typically limited to 8-bit resolution

Relatively large area and power for higher resolution
ott

SAR ADC

- Leverages a DAC to sequentially compare its output values to the input voltage
 - Minimal analog complexity requires only one comparator and a capacitor DAC
 - Successive Approximation Algorithm (SAR) is efficient comparison algorithm for comparing DAC to input value
 - Has recently become very attractive in advanced CMOS for modest resolution (i.e., 8 to 10 bits) applications

SAR Algorithm

- We can efficiently compare the DAC output to the input voltage, V_{in}, by successively subdividing the range from MSB to LSB
 - Number of comparisons ≈ number of bits
 - Example: 10-bit SAR ADC requires roughly 10 comparisons per sample

Pipeline ADC

Resolves ADC bits in several stages

- Earlier stages resolve MSB bits
- Calculate *residue* for later stages through subtraction of MSB estimate
 - Amplify residue so that all stages operate over similar voltage ranges
- Pipeline trends
 - 1-bit per stage in the past; now going to multi-bit per stage
 - For advanced CMOS, interleaved SAR architectures are starting to look more attractive than pipelines

Interleaved ADC

 $\mathsf{D}_{\mathsf{N-1}}$

Key challenges include clock skew, mismatch between ADCs, higher input capacitance

CLK4

Sigma-Delta ADC (Discrete-Time)

- Oversampled input
 - Clock rate is much higher than bandwidth of input signal
- Noise shaped quantization noise
 - Uses similar concepts as Sigma-Delta DAC considered in Lecture 22
 - Leads to high effective precision despite having a coarse quantizer

Sigma-Delta ADC (Continuous-Time)

- Similar to Discrete-Time, but important differences
 - Sampler occurs after the filtering
 - Allows removal of high frequency noise before sampling
 - Only the quantizer and DAC need to settle during each sample
 - Allows higher speed

Time-to-Digital Conversion

Quantization in time achieved with purely digital gates

Easy implementation, resolution improving with Moore's law

How can we leverage this for quantizing an analog voltage?

Adding Voltage-to-Time Conversion

- Analog voltage is converted into edge times
 - Time-to-digital converter then turns the edge times into digitized values
- Key issues
 - Non-uniform sampling
 - Noise, nonlinearity

Is there a simple implementation for the Voltage-to-Time Converter?

A Highly Digital ADC Implementation

- A voltage-controlled ring oscillator offers a simple voltage-to-time structure
 - Non-uniform sampling is still an issue

We can further simplify this implementation and lower the impact of non-uniform sampling

Making Use of the Ring Oscillator Delay Cells

Utilize all ring oscillator outputs and remove TDC delays

Simpler implementation

TDC output now samples/quantizes phase state of oscillator M.H. Perrott

14

Improving Non-Uniform Sampling Behavior

Oscillator edges correspond to a sample window of the input

Sampling the oscillator phase state yields sample windows that are much more closely aligned to the TDC clk
I.H. Perrott

Multi-Phase Ring Oscillator Based Quantizer

 Quantizer output corresponds to the number of delay cells that experience a transition in a given Ref clock period *M.H. Perrott*

More Details ...

- Choose large enough number of stages, N, such that transitions never cycle through a given stage more than once per Ref clock period
 - Assume a high Ref clock frequency (i.e., 1 GHz)
- XOR operation on current and previous samples provides transition count

A First Step Toward Modeling

- VCO provides quantization, register provides sampling
 - Model as separate blocks for convenience
- XOR operation on current and previous samples corresponds to a first order difference operation

Extracts VCO frequency from the sampled VCO phase signal I.H. Perrott

18

Corresponding Frequency Domain Model

Example Design Point for Illustration

SNR/SNDR Calculations with 20 MHz Bandwidth

Classical Analog Versus VCO-based Quantization

- Much more digital implementation
- Offset and mismatch is not of critical concern
- Metastability behavior is potentially improved
- Improved SNR due to quantization noise shaping

Implementation is high speed, low power, low area

Key Performance Issues: Nonlinearity and Noise

- Very hard to build a simple ring oscillator with linear K_v
- Noise floor set by VCO phase noise is typically higher than for analog amplifiers at same power dissipation

Feedback Is Our Friend

Issue: must achieve a highly linear DAC structure

Otherwise, noise folding and other bad things happen ...
M.H. Perrott

A Closer Look at the DAC Implementation

Recall that Ring Oscillator Offers Implicit Barrel Shifting

Implicit Barrel Shifting Applied to DAC Elements

Acts to shape DAC mismatch and linearize its behavior M.H. Perrott

First Generation Prototype

Second order dynamics achieved with only one op-amp

- Op-amp forms one integrator
- I_{dac1} and passive network form the other (lossy) integrator
- Minor loop feedback compensates delay through quantizer
- Third order noise shaping is achieved!

VCO-based quantizer adds an extra order of noise shaping M.H. Perrott

Custom IC Implementing the Prototype

Measured Spectrum From Prototype

M.H. Perrott

Measured SNR/SNDR Vs. Input Amplitude (20 MHz BW)

M.H. Perrott

Summary

- ADC design is an active area of research
 - Many topologies possible
 - Much innovation is still ongoing, especially as new CMOS fabrication processes are introduced
- Key topologies
 - Flash
 - SAR
 - Pipeline
 - Sigma-Delta
- VCO-based ADCs are a new area of interest
 - Take advantage of high speed of new CMOS processes
 - Leverage digital circuits
 - Can achieve good performance, but innovation still needed