Analysis and Design of Analog Integrated Circuits Lecture 3

Large Signal Modeling of CMOS Transistors

Michael H. Perrott January 29, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

Introducing CMOS Devices

CMOS: Complementary Metal Oxide Semiconductor

Current flow through channel between Drain and Source is controlled by Gate

Complementary: both PMOS and NMOS are available *M.H. Perrott*

Simplified MOS Symbol for Typical Bulk Connections

- Bulk silicon below the channel under the gate also has an impact on the channel current
 - We often tie the Bulk to Gnd/Vdd for NMOS/PMOS devices
- In such case, the symbol does not include the bulk terminal
 M.H. Perrott

Symbol Notation Often Includes Size

- The designer is generally free to choose the width (W) and length (L) of the device
 - Wider width is often chosen to achieve higher channel current for a given gate bias voltage
 - Longer length is often avoided since it lowers the channel current and decreases the operating speed of the device
 - The minimum length for the gate is often used to define the process name (i.e., 0.18u CMOS or 0.13u CMOS)
 - Longer length is used in cases where better matching or high resistance is desired

Channel Current as a Function of Gate Voltage

- If $V_{gs} < V_{TH}$, then current density I_d/W is small
 - The device is in the subthreshold operating region
- For V_{gs} > V_{TH}, then I_d/W is much larger
 - The device is in strong inversion
 - If $V_{ds} > \Delta V$, then I_d is relatively independent of V_{ds}
 - The device is in the saturation operating region
 - If $V_{ds} < \Delta V$, then I_d is strongly dependent on V_{ds}
 - The device is in the triode operating region

PMOS Devices are Complementary to NMOS Devices

Same observations and definitions apply to PMOS

- However, voltage and current signs are flipped
 - Note that $V_{sg} = -V_{gs}$, $V_{sd} = -V_{ds}$
 - Note that I_d as defined above for PMOS is in the opposite direction as for NMOS
 - Note that V_{TH} becomes negative

Examine MOS Behavior As V_{ds} is Increased

How does V_{GS} influence I_d in the above curve ?

MOS Behavior Is A Function of V_{gs} and V_{ds}

See page 15-23 of Razavi...

MOS Current Equations in Triode and Saturation Regions

The Issue of Velocity Saturation

When in saturation, the MOS current is calculated as

$$I_D \approx \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_{TH})^2$$

Which is really

$$I_D \approx \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{gs} - V_{TH}) V_{dsat,l}$$

Here V_{dsat,I} is the saturation voltage at a given length
 It may be shown that

$$V_{dsat,l} \approx \frac{(V_{gs} - V_{TH})(LE_{sat})}{(V_{gs} - V_{TH}) + (LE_{sat})} = (V_{gs} - V_{TH})||(LE_{sat})$$

- If V_{gs}-V_{TH} approaches LE_{sat} in value, then
 - We say that the device is in velocity saturation
 - The current becomes *linearly* related to V_{gs}-V_{TH}

Example: Current Versus Voltage for 0.18µ Device

The Tricky Issue of Modeling MOS Devices

- The device characteristics of modern CMOS devices lead to complicated analytical models
 - This creates challenges for achieving accurate hand calculations with reasonable effort
- Hand calculations are essential in achieving deeper understanding and intuition of circuit and device behavior
 - Simple hand calculations lack accuracy
 - Detailed hand calculations often do not yield the desired insight and understanding to make them worthwhile
- A typical compromise
 - Assume simple models for hand calculations
 - Use SPICE to get a more accurate picture of the actual circuit and device characteristics and performance

What is the Key Role of Large Signal Calculations?

- In analog circuits, we are often focused on amplifiers in which the small signal behavior is of high importance
 - Large signal calculations lead to the operating point information of the circuit which is used to determine the small signal model of the device
- Example amplifier circuit:

A Key Small Signal Parameter: Transconductance

- Transconductance from input gate voltage, V_{gs}, to channel current, I_d, is very important for amplifier circuits
 - Assuming device is in saturation:

$$I_D = \frac{\mu_n C_{ox} W}{2} (V_{gs} - V_{TH})^2 (1 + \lambda V_{ds})$$

>
$$g_m = \frac{\delta I_d}{\delta V_{gs}} \approx \mu_n C_{ox} \frac{W}{L} (V_{gs} - V_{TH}) \approx \sqrt{2\mu_n C_{ox} \frac{W}{L} I_d}$$

A Key Small-Signal Nonideality: Output Resistance

- Ideally, I_d would not change with V_{ds} when the device is in saturation
 - Practical CMOS transistors exhibit I_d dependence on V_{ds} due to channel length modulation
 - The parameter λ is often used to characterize this effect

$$r_o = \frac{1}{g_{ds}} = \frac{\delta V_{ds}}{\delta I_d} = \frac{1}{\lambda I_d}$$

Another Non-Ideality: Back-Gate Effect

The threshold voltage of the device, V_{TH}, is dependent on the potential between the source and bulk

$$V_{TH} = ??$$

 This implies that changes in the source node voltage, V_s, lead to changes in the channel current, I_d

We model this effect as backgate transconductance, g_{mb}

$$g_{mb} = \frac{\delta I_d}{\delta V_s}$$

MIC503 will provide details (also see pages 34-36 of Razavi)
M.H. Perrott

16

MOS DC Small Signal Model

- Assuming transistor is in saturation:
 - Note that designers often determine g_{mb} impact from SPICE

MOS DC Small Signal Model

- Assuming transistor is in triode region:
 - The channel of the device can be approximated as a resistor whose value depends on the DC operating point of V_{gs}

Example: Determine ΔV and Operating Region (NMOS)

Assume $V_{THn} = 0.5V$

Region =

Region =

Region =

 $\Delta V =$

 $\Delta V =$ Region =

Region =

 $\Delta V =$

Region =

Example: Determine ΔV and Operating Region (PMOS)

• Assume $V_{THp} = -0.5V$

 $\Delta V =$

Region =

Region =

Region =

 $\Delta V =$

 $\Delta V =$

Region =

Region =

 $\Delta V =$

Region =

Example: Determine Operating Region of M₁ and M₂

Assume $V_{THn} = 0.5V$, $V_{THp} = -0.5V$, $\mu_n C_{ox} = 50\mu A/V^2$, $\mu_p C_{ox} = 20\mu A/V^2$, $\lambda = 0$, and M_1 and M_2 have the same value of W and L

Determine operating region for M₁ and M₂ assuming:

V_{bias} = 1.2

$$V_{bias} = 0.65$$

Example: Determine ΔV and Operating Region

Assume $V_{\text{biasp}} = 0.7V$, $V_{\text{THn}} = 0.5V$, $V_{\text{THp}} = -0.5V$, $\mu_n C_{\text{ox}} = 50\mu A/V^2$, $\mu_p C_{\text{ox}} = 20\mu A/V^2$, $\lambda = 0$

- Determine V_{biasn} such that V_{out} = 0.5V
 - Note that with $\lambda = 0$, a variety of V_{out} solutions will exist for the same V_{biasn} – I'm just trying to keep calculations simple

Determine the resulting operating region of M₁ and M₂