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Lecture 3 Discussed Large Signal Calculations

 In analog circuits, we are often focused on amplifiers in 
which the small signal behavior is of high importance
- Large signal calculations lead to the operating point 

information of the circuit which is used to determine the 
small signal model of the device

 Example amplifier circuit:
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ID 1) Solve for bias current Id
2) Calculate small signal
     parameters (such as gm, ro)
3) Solve for small signal response
     using transistor hybrid-π small
     signal model

Small Signal Analysis Steps
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A Key Design Parameter is the Sizing of Devices

 The designer is generally free to choose the width (W) 
and length (L) of the device
- Wider width is often chosen to achieve higher channel 

current for a given gate bias voltage
- Longer length is often avoided since it lowers the channel 

current and decreases the operating speed of the device
 The minimum length for the gate is often used to define the 

process  name (i.e., 0.18u CMOS or 0.13u CMOS)
 Longer length is used in cases where better matching or 

high resistance is desired
3
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MOS DC Small Signal Model (Saturation Assumed)

 How do we model if device is in the triode region?
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gm = μnCox(W/L)(VGS - VTH)(1 + λVDS)

     =   2μnCox(W/L)ID    (assuming λVDS << 1)

Cox

2qεsNA

2   2|ΦF| + VSB

γgm where γ =gmb =

In practice:   gmb = gm/5 to gm/3

λID
1ro =

ID
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CMOS Devices Also Have Capacitance 

S D

G
VGS

VD>ΔV

ID

LDLD

overlap cap:  Cov = WLDCox + WCfringe

B

Cgc
Ccb

Cov

CjdbCjsb

Cov

Side View

gate to channel cap:  Cgc =      CoxW(L-2LD)

channel to bulk cap:  Ccb - ignore in this class

S D

Top View

W

E

L

E

E

source to bulk cap:  Cjsb = 
1 + VSB ΦB

Cj(0)

1 + VSB ΦB

Cjsw(0)
WE + (W + 2E)

junction bottom wall 
cap (per area)

junction sidewall 
cap (per length)

drain to bulk cap:  Cjsd = 
1 + VDB ΦB

Cj(0)

1 + VDB ΦB

Cjsw(0)
WE + (W + 2E)

2
3

(make 2W for "4 sided" 
 perimeter in some cases)

L
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MOS AC Small Signal Model (Device in Saturation)
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Cgs
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Cgs = Cgc + Cov =      CoxW(L-2LD) + Cov
2
3

Cgd = Cov

Csb = Cjsb (area + perimeter junction capacitance)

Cdb = Cjdb (area + perimeter junction capacitance)
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Small Signal Modeling Strategy

 We will focus on the DC Small Signal Model first
- This will allow us to calculate the gain of amplifiers
- This will also allow us to derive Thevenin resistances

 We will later combine this information with the capacitors 
within the AC Small Signal Model to estimate frequency 
response information

 Homework 1 should have revealed to you how clumsy 
the DC Small Signal Model can be in calculations
- We need a more streamlined approach

 Strategy:  give up general approach, and focus on 
achieving a simpler model that fits a large number of 
circuit topologies that we will encounter
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Hybrid-π Model
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gm 2μnCox(W/L)ID 

2   2|ΦF| + VSB

γgmgmb

λID
1ro

Key Small-Signal Parameters

qID 
nkT

(n-1)qID 

nkT

Strong Inversion Weak Inversion

λID
1

Parameter
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Thevenin Modeling of CMOS Transistors

 Use the Hybrid- model of transistor to calculate 
Thevenin resistances at each transistor node

 Use these Thevenin resistance calculations for many 
circuit topologies that we encounter

We will discuss weak inversion
(i.e., subthreshold region) later
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Rthg

ID

Rthd
= ro (1+gmRS)

Rthg
= infinite

Rths
=

1 + RD /ro

gm

Thevenin Resistances

Approximation
(gmb << gm, gmro >> 1)

g
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d

Rthd
= ro (1+(gm+gmb)RS)+RS

Rthg
= infinite

Exact

Rths
= 1+RD /ro gm+gmb

1ro( )( )

RD

RS

Rthd

Rths

Rthg

RG

-gmbvsvgs

vs

rogmvgs

Hybrid-π Model

g

s

d

1
gm

gm 2μnCox(W/L)ID 

2   2|ΦF| + VSB

γgmgmb
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Key Small-Signal Parameters

qID 
nkT

(n-1)qID 
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Strong Inversion Weak Inversion

λID
1

Parameter

Note:  gmb = 0
if RS=0 or Vsb=0

(RD<< ro 
)
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Thevenin Resistance Expressions

 Thevenin resistances 
useful for many 
calculations

 It would be nice to 
replace Hybrid-
model with a simpler 
alternative
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Replace Hybrid- Model with Proposed Thevenin Model
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Proposed Small Signal Transistor Model

Av = 1

α = 1
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Rthg

ID

Rthd
= ro (1+gmRS)

Rthg
= infinite

Rths
=

1 + RD /ro

gm

Thevenin Resistances

Approximation
(gmb << gm, gmro >> 1)

g

s

d

Rthd
= ro (1+(gm+gmb)RS)+RS

Rthg
= infinite

Exact

Rths
= 1+RD /ro gm+gmb

1ro( )( )

Av = gm+gmb
gmro

gm

ApproximationExact

α  = 1+RD /Rthd
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1ro

Key Small-Signal Parameters

qID 
nkT
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nkT

Strong Inversion Weak Inversion

λID
1

Parameter

(gmb<<gm, gmro>>1)

Note:  gmb = 0
if RS=0 or Vsb=0

(RD<< ro 
) (RD<<Rthd

)
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Key Things to Know About the Proposed Thevenin Model

 This model may be generally applied in cases where the 
transistor is in saturation and where there is not strong 
interaction between the transistor terminals
- Works well for open loop amplifier stages which will be our 

initial focus
 Proposed model is not commonly taught – I developed it
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Proposed Small Signal Transistor Model

Av = 1

α = 1
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Rthg

ID
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= ro (1+gmRS)

Rthg
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=
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A General View of Signal Flow in an Open Loop Device

 To first order, influence of signals go from gate to 
source or from gate and/or source to drain
- This is only true when the device is in saturation 12
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Example:  Small Signal Analysis of Amplifier Circuit

 First step:  determine the operating region of transistor
- For triode region, approximate channel as a resistance

 Id will usually be set primarily by drain and source network
- For subthreshold region, approximate channel as open

 Later on, we will take a more accurate view of this
- For saturation region, use proposed Thevenin model

 Id will usually be set by gate voltage and source network 
(i.e., resistance and voltage)

 Small signal parameters (gm, ro, etc.) can be calculated 
once Id is known

RG

Vin

Vout

RS

RD

M1

Key device characteristics
that must be known:

For gm, ro:  W, L, nCox, 

For gmb:  gm, , F, VSB
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Substitute Proposed Thevenin Model (Assumes Saturation)

 Notice that all voltages and currents can be calculated 
without requiring simultaneous equations! 
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Reduce to Two-Port

 Calculation of Gm:
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Vin

Vout

100Ω
M1

10kΩ

100Ω

Vbias= 0.65V

1.3V

13u
0.13u

Detailed Example

 Determine operating point conditions
- Transistor operating region,  Id

 Determine small signal parameters of transistor model
- If transistor is in saturation,  this is gm, ro, etc.

 Determine gain of amplifier
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Assumptions:

nCox = 50A/V2, VTHn = 0.5V 

 = 1/(10V),  = 0


