Analysis and Design of Analog Integrated Circuits Lecture 4

Small Signal Modeling of CMOS Transistors

Michael H. Perrott February 1, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

Lecture 3 Discussed Large Signal Calculations

- In analog circuits, we are often focused on amplifiers in which the small signal behavior is of high importance
 - Large signal calculations lead to the operating point information of the circuit which is used to determine the small signal model of the device
- Example amplifier circuit:

A Key Design Parameter is the Sizing of Devices

- The designer is generally free to choose the width (W) and length (L) of the device
 - Wider width is often chosen to achieve higher channel current for a given gate bias voltage
 - Longer length is often avoided since it lowers the channel current and decreases the operating speed of the device
 - The minimum length for the gate is often used to define the process name (i.e., 0.18u CMOS or 0.13u CMOS)
 - Longer length is used in cases where better matching or high resistance is desired

MOS DC Small Signal Model (Saturation Assumed)

How do we model if device is in the triode region?

CMOS Devices Also Have Capacitance

channel to bulk cap: C_{cb} - ignore in this class *M.H. Perrott*

MOS AC Small Signal Model (Device in Saturation)

$$\begin{split} C_{gs} &= C_{gc} + C_{ov} = \frac{2}{3} C_{ox} W(L-2L_D) + C_{ov} \\ C_{gd} &= C_{ov} \\ C_{sb} &= C_{jsb} \quad (\text{area + perimeter junction capacitance}) \\ C_{db} &= C_{jdb} \quad (\text{area + perimeter junction capacitance}) \end{split}$$

Small Signal Modeling Strategy

- We will focus on the DC Small Signal Model first
 - This will allow us to calculate the gain of amplifiers
 - This will also allow us to derive Thevenin resistances
 - We will later combine this information with the capacitors within the AC Small Signal Model to estimate frequency response information
- Homework 1 should have revealed to you how clumsy the DC Small Signal Model can be in calculations
 - We need a more streamlined approach
 - Strategy: give up general approach, and focus on achieving a simpler model that fits a large number of circuit topologies that we will encounter

Thevenin Modeling of CMOS Transistors

We will discuss weak inversion (i.e., subthreshold region) later

- Use the Hybrid-π model of transistor to calculate Thevenin resistances at each transistor node
- Use these Thevenin resistance calculations for many circuit topologies that we encounter

Thevenin Resistance Expressions

Replace Hybrid- π Model with Proposed Thevenin Model

Key Things to Know About the Proposed Thevenin Model

- This model may be generally applied in cases where the transistor is in saturation and where there is not strong interaction between the transistor terminals
 - Works well for open loop amplifier stages which will be our initial focus
- Proposed model is not commonly taught I developed it

A General View of Signal Flow in an Open Loop Device

To first order, influence of signals go from gate to source or from gate and/or source to drain

This is only true when the device is in saturation

Example: Small Signal Analysis of Amplifier Circuit

Key device characteristics that must be known:

For \mathbf{g}_{m} , \mathbf{r}_{o} : W, L, $\mu_{n}\mathbf{C}_{ox}$, λ

For \mathbf{g}_{mb} : \mathbf{g}_{m} , γ , Φ_{F} , V_{SB}

- First step: determine the operating region of transistor
 - For triode region, approximate channel as a resistance
 - I_d will usually be set primarily by drain and source network
 - For subthreshold region, approximate channel as open
 - Later on, we will take a more accurate view of this
 - For saturation region, use proposed Thevenin model
 - I_d will usually be set by gate voltage and source network (i.e., resistance and voltage)
 - Small signal parameters (g_m, r_o, etc.) can be calculated once I_d is known

Substitute Proposed Thevenin Model (Assumes Saturation)

Notice that all voltages and currents can be calculated without requiring simultaneous equations!

Reduce to Two-Port

Calculation of G_m:

$$\alpha i_s = i_s = \frac{A_v}{R_{th_s} + R_s} v_g \approx \frac{1}{1/g_m + R_s} v_g = \frac{g_m}{1 + g_m R_s} v_g = G_m v_g$$

Detailed Example

Assumptions:

- Determine operating point conditions
 - Transistor operating region, I_d
- Determine small signal parameters of transistor model
 - If transistor is in saturation, this is g_m, r_o, etc.
- Determine gain of amplifier