Analysis and Design of Analog Integrated Circuits Lecture 6

Current Mirrors

Michael H. Perrott February 8, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

M.H. Perrott

From Lecture 5: Basic Single-Stage CMOS Amplifiers

Common Source

Common Source with Source Degeneration

A Closer Look at Load Impedance

Common Gate Z_L V_{out} W_1 W_1 M_1 i_{in} Source

Common Source with Source Degeneration

- To achieve high gain (or low attenuation in the case of a source follower), it is very desirable to achieve high load impedance, Z_L
 - Unfortunately, using a simple resistor of high value has issues
 - What are these issues?

3

Issue #1: Headroom Limitations

Common Source V_{dd} R_L V_{out} V_{dd} V_{dd} V_{out} V_{dd} V_{dd} V_{out} V_{dd} V_{dd} V_{d

The bias current of the device is a direct function of R_L

$$I_d = \frac{V_{dd} - V_{ds}}{R_L}$$

- V_{dd} is < 3.6V for most modern CMOS processes</p>
- V_{ds} must be greater than ΔV to maintain device saturation

Large R_L implies small I_d (implies small g_m, poor frequency response, etc.)

M.H. Perroti

Issue #2: Area of Circuit

- The most common resistors for precision analog circuits are often based on unsilicided polysilicon layers
 - The sheet resistance of unsilicided polysilicon is often < 1kΩ/square

Large polysilicon R_L implies relatively large circuit area (implies high relative cost)

An Elegant Approach to Achieving High Gain

- Replacement of resistor load with a current source yields the highest possible DC gain out of the amplifier
 - Current source determines I_d of device
- We can make current sources out of transistors
 - Generally smaller area than polysilicon resistors

What is the small signal gain of the above circuit?

A Simple Transistor Based Current Source

- Simply use a PMOS load that is properly biased
 - If we keep the PMOS in saturation, its current is relatively constant despite V_{sd} variations
 - This is the desired behavior of a current source

What are the nonideal issues of the above approach?

Issue #1: Impedance of PMOS Device

- An ideal current source has infinite impedance
- PMOS devices have finite impedance
 - What is Z_L in the above circuit?
 - How does finite Z_L impact the gain of the circuit?

We will later examine techniques to increase Z_L

Issue #1: High Bias Sensitivity

- The PMOS device current, I_d, is very sensitive to the value of V_{bias}
 - We want I_d to be relatively constant across temperature and process variations

How can we achieve tighter control over I_d across temperature and process variations?

M.H. Perrott

Key Technique: Use Current Mirror

- Key idea: use a different PMOS device, M₃, to transform a bias current, I_{bias}, into bias voltage, V_{bias}
 - V_{bias} now yields a consistent current, I_d, in M₂ (assumed to be in saturation) across temperature and process variations
 - Note that layout of M₂ and M₃ must be done properly to achieve good device matching

How does I_d relate to I_{bias}?

NMOS Devices Can Also Be Used for Current Mirrors

- We often use both NMOS and PMOS versions in designs
 - We'll explore this issue further later in the semester
- General issue: current mirrors involve direct feedback between drain and gate

Can we apply proposed Thevenin modeling approach to current mirrors?

Issue: Thevenin Impedances Are Not Adequate

Looking as purely Thevenin impedances

$$Z_o = R_{th_d} || R_{th_g} = r_o (1 + g_m R_s) || \infty = r_o (1 + g_m R_s)$$

But, in reality

$$Z_o = \frac{1}{g_m} + \left(\frac{g_m + g_{mb}}{g_m}\right) R_s$$

Issue: coupling between source, drain, or gate

Do we have to abandon the Thevenin method?

M.H. Perrott

Try Proposed Thevenin Model

 $\Rightarrow Z_o = \frac{v_t}{i_t} = \frac{1}{a_m} + \left(\frac{g_m + g_{mb}}{a_m}\right) R_s$

Proposed Thevenin Model Works!

14

Check Thevenin Resistance Calculation

• Plug in Hybrid- π to do the analysis

- Answer agrees with proposed Thevenin model approach
- Easiest to just memorize this result:

Diode connected MOS looks like a resistor of value 1/g_m

Now Apply Thevenin Approach to the Current Mirror

Key parameter of current source: output resistance
Corresponds to r_o of device

Cascoded Current Source

- Offers increased output resistance
 - Calculate using Thevenin resistance method
 - How does I_{ref} compare to I_{bias}?

Double Cascode Current Source

Offers further increased output resistance

- Calculate using Thevenin resistance method
- How does I₂ compare to I₁?