Analysis and Design of Analog Integrated Circuits Lecture 8

Cascode Techniques

Michael H. Perrott February 15, 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

Review of Large Signal Analysis of Current Mirrors

$$\begin{split} \frac{\Delta V_2}{l_1} &= \frac{\frac{1}{2} \mu_n C_{ox} \frac{W_2}{L_2} (V_{GS2} - V_{TH})^2 (1 + \lambda_2 V_{dS2})}{\frac{1}{2} \mu_n C_{ox} \frac{W_1}{L_1} (V_{GS1} - V_{TH})^2 (1 + \lambda_1 V_{dS1})} \\ \text{But, } V_{TH} + \Delta V_1 = V_{TH} + \Delta V_2 \quad \textcircled{P} \quad \Delta V_1 = \Delta V_2 \\ & \textcircled{P} \quad \frac{l_2}{l_1} = \frac{W_2}{W_1} \frac{L_1}{L_2} \frac{(1 + \lambda_2 V_{dS2})}{(1 + \lambda_1 V_{dS1})} \\ & \overbrace{Current} \quad \text{Mismatch} \\ & \text{setting} \quad \text{due to } V_{ds} \\ & \text{based on difference} \\ & \text{geometry} \\ \end{aligned}$$

The Issue of V_{ds} Mismatch in Current Mirrors

$$\frac{I_2}{I_1} = \frac{W_2}{W_1} \underbrace{\frac{(1+\lambda_2 V_{ds2})}{(1+\lambda_1 V_{ds1})}}_{\text{Current Mismatch setting due to } V_{ds}}_{\text{based on difference geometry}}$$

Note: we are assuming $L_1 = L_2$

- Issue: Current I₂ can vary significantly as a function of the drain voltage of M₂
 - We often want a tightly controlled current set only by I₁ and transistor sizes
- How do we improve the current mirror matching performance?

Cascoded Current Source

- Offers increased output resistance
 - Reduces small signal dependence of output current on the output voltage of the current source
 - **From Lecture 6, we derived:**
 - $R_{th_{d3}} \approx r_{o3}(1 + g_{m3}R_{th_{d1}}) = r_{o3}(1 + g_{m3}r_{o1}) \approx (g_{m3}r_{o3})r_{o1}$
 - Output resistance boosted by intrinsic gain of M₃, g_{m3}r_{o3}
- But how do we reduce the influence of large signal V_{ds} mismatch between M₁ and M₂?

Match V_{ds} of Current Mirror Devices With Proper Bias

- Key transistor for determining I₂ is M₁
 - Why is M₂ less important?
- Above biasing approach provides a much closer match between V_{ds1} and V_{ds4}

$$I_{2} = \frac{W_{1}}{W_{4}} \frac{1 + \lambda V_{ds1}}{1 + \lambda V_{ds4}} I_{1} \approx \frac{W_{1}}{W_{4}} I_{1}$$

The Drawback of Basic Cascode Bias Approach

- Output voltage range is reduced
 - Now V_o must be > V_{TH} + $2\Delta V$
 - What will happen to the output impedance of the current source if the output voltage is too low?
 - Can we improve the voltage range?

Improved Swing Cascode

• Key idea: set size of M_3 such that $V_{ds1} = \Delta V$

Assuming strong inversion for M₁ and M₃:

$$\Delta V = \sqrt{\frac{2I_d L}{\mu_n C_{ox} W}} \Rightarrow \alpha = \frac{1}{4}$$

Alternative Implementation of Improved Swing Cascode

- Set α as on previous slide
- Note: both implementations share a common problem

The Issue of Current Mismatch

- The improved swing approach causes a systematic mismatch between I₂ and I₁
 - **•** Key issue: $V_{ds1} \neq V_{ds4}$

Can we fix this problem?

Techniques to Reduce Current Mismatch

- Systematic mismatch between I₁ and I₂ is greatly reduced by using the above circuit (now V_{ds1} ≈ V_{ds4})
 - Note that gate bias on M₂ and M₃ may be provided by previously discussed circuits
- Additional techniques for accurately matching I₁ and I₂
 - Set $L_1 = L_4 >> L_{min}$
 - Note: set $L_2 = L_3 \approx L_{min}$ for lower area and capacitance
 - Set $W_2/W_3 = I_2/I_1$ so that $\Delta V_2 = \Delta V_3$

Another Common Cascode Bias Topology

Key issue: needs two bias current branches

Utilizing a Simple Resistor to Achieve One Bias Branch

Issue: poly resistor is large and won't track NMOS devices across temperature and process variations M.H. Perrott

Better Approach: Use PMOS Device In Triode Region

Much smaller, better tracking with NMOS devices than resistor M.H. Perrott

Wilson Current Mirror

- Relies on feedback in its operation
- Using Hybrid- π analysis

$$R_{th_{d2}} \approx \frac{1}{g_{m1}} (g_{m2} r_{o2}) (g_{m3} r_{o3})$$

Output resistance comparable to cascode current source

This circuit is rarely used these days

Enhanced Cascode Current Source

- Offers output resistance comparable to double cascode current source
- As with Wilson mirror, analysis is tricky due to source/gate coupling
 - Using results shown in the following slide:

 $R_{th_{d4}} \approx (g_{m4}r_{o4})(g_{m3}r_{o3})r_{o1}$

Thevenin Resistances for CMOS Transistor Feedback Pair

Basic Cascode Amplifier

Allows improved frequency response (discussed later)
Reduction to two-port will be done in several steps
 M.H. Perrott

Eliminate Middle Sections

Calculation of G_{m1} same as for common source amp

To reduce further, note that

$$R_{th_{d1}} \gg R_{th_{s2}} \quad \Rightarrow \quad \alpha_2 i_{s2} = i_{s2} \approx G_{m1} v_{g1}$$

Resulting Two-Port Similar to Common Source Amp

Key difference: drain impedance much larger

$$R_{th_{d2}} \approx r_{o2}(1 + g_{m2}R_{th_{d1}}) \approx r_{o2}(1 + g_{m2}r_{o1}(1 + g_{m1}R_s))$$
$$\approx (g_{m2}r_{o2})(g_{m1}r_{o1})R_s$$

Slight Twist to Cascode Amplifier

- What is the difference between this amplifier and basic cascode amplifier?
- What are the constraints in setting V_{bias}?
- What is the maximum output voltage swing?

Constraints on V_{bias} and Output Range

To keep M₂ and M₄ in saturation

 $V_{bias} - (V_{TH} + \Delta V_1) > \max(\Delta V_2, \Delta V_4)$ $\Rightarrow V_{bias} > V_{TH} + \Delta V_1 + \max(\Delta V_2, \Delta V_4)$

To keep M₁ in saturation

$$V_{out} - (V_{bias} - (V_{TH} + \Delta V_1)) > \Delta V_1$$

$$\Rightarrow V_{out} > V_{bias} - V_{TH}$$

Calculation of Maximum Output Range

Minimum V_{bias} allows the maximum output range

$$\Rightarrow V_{bias} = V_{TH} + \Delta V_1 + \max(\Delta V_2, \Delta V_4)$$

Resulting output range

$$V_{bias} - V_{TH} < V_{out} < V_{dd}$$

$$\Delta V_1 + \max(\Delta V_2, \Delta V_4) < V_{out} < V_{dd}$$

Variation on a Theme: Enhanced Cascode Amplifiers

- We can turn the enhanced cascode current source into an amplifier
 - Inject a current input at the source of M₄
- Key aspects of small signal analysis can be done using Thevenin method
 - Simply leverage Thevenin resistance formulas shown on Slide 16

Small-Signal Analysis of Enhanced Cascode Amp

- From Thevenin resistance calculations on Slide 16:
 - Input impedance is quite low

$$R_{in} \approx R_{th_{d1}} || \left(1 + \frac{R_1}{r_{o4}} \right) \frac{1}{g_{m4}(g_{m3}r_{o3})} \approx \frac{1}{g_{m4}(g_{m3}r_{o3})}$$

Output impedance is probably determined by R₁

 $R_{out} \approx R_1 || (g_{m4}r_{o4})(g_{m3}r_{o3})(R_{th_{d1}}||R_s) \approx R_1$

This amplifier is useful for extracting a current signal while keeping the source voltage nearly constant M.H. Perrott