Analysis and Design of Analog Integrated Circuits Lecture 9

Open Circuit Time Constant Technique

Michael H. Perrott
February 26, 2012
Copyright © 2012 by Michael H. Perrott All rights reserved.

Review of Our Analysis Techniques

- Two port analysis allows us to quickly calculate small signal gain from cascaded network stages

The Problem with Complex Impedances

- When complex impedances are considered (i.e., capacitors, inductors, and resistors), things get much more messy
- Complex impedance calculations are time consuming
- Capacitance between drain and gate of transistors complicates calculation effort further

Can we determine a faster analysis path to gain intuition?

General Frequency Response for Amplifiers

- Midband gain can be calculated by assuming purely resistive impedances (as we have done so far)
- Large valued capacitors used for AC coupling will be shorts in this analysis
- For DC coupled circuits, typically DC gain = Midband Gain
- Small valued capacitors will be opens in this analysis

Our Focus Will Be on High Frequency Poles

- We are particularly interested in knowing the bandwidth of our amplifier circuit
- Bandwidth is primarily set by the lowest frequency pole, w_{0}
- Additional attenuation occurs at frequencies beyond the amplifier bandwidth by higher frequency poles w_{1}, w_{2}, etc.

Open Circuit Time Constant Technique

- The Open Circuit Time Constant (OCT) technique allows us to quickly estimate the bandwidth of an amplifier circuit
- We will see that it is most accurate when there is one dominant pole, w_{0}
- This means that $\mathrm{w}_{1}, \mathrm{w}_{2}$, and higher poles are not close in frequency to w_{0}
- This will hold for opamps and other circuits that operate in feedback
- There is still considerable value to the OCT method in providing design intuition even when there is not just one dominant pole

Short Circuit Time Constant Technique

- The Short Circuit Time Constant (SCT) technique allows us to quickly estimate the AC-coupled cutoff frequency, $\mathrm{w}_{\text {aco }}$
- This has many similarities to the OCT method, but we will not discuss in this class since
- AC coupling is not used very often in integrated circuits due to the high cost of large valued capacitors
- When AC coupling is applied in integrated circuits, it is often quite easy to estimate the AC-coupled cutoff frequency since there are relatively few poles in the circuit related to AC-coupling

Key Assumptions for the OCT Technique

- Let us assume that the transfer function from $\mathrm{V}_{\text {in }}$ to $\mathrm{V}_{\text {out }}$ is

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{K}{\left(\tau_{0} s+1\right)\left(\tau_{1} s+1\right) \cdots\left(\tau_{n-1} s+1\right)}
$$

- Note that we are ignoring any AC-coupling poles/zeros
- This implies that are approximating DC gain = Midband gain
- The OCT method does not require this assumption - it just simplifies the analysis to follow
- Note also that DC gain equals K in the above transfer function
- We see this by setting $s=0$

Key Idea of the OCT Technique

- Assuming the transfer function from $\mathrm{V}_{\text {in }}$ to $\mathrm{V}_{\text {out }}$ is:

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{K}{\left(\tau_{0} s+1\right)\left(\tau_{1} s+1\right) \cdots\left(\tau_{n-1} s+1\right)}
$$

- We can achieve a reasonable approximation of the bandwidth of the system by instead considering:

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{K}{\left(\sum_{i=0}^{n-1} \tau_{i}\right) s+1}
$$

- Here τ_{i} are the "time constants" corresponding to the poles of the circuit network

Bandwidth Estimate from OCT Technique

- The OCT technique approximates the transfer function as:

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{K}{\left(\sum_{i=0}^{n-1} \tau_{i}\right) s+1}
$$

- The estimated bandwidth is found by substituting $s=j w_{0}$ and solving for w_{0} such that the magnitude is $K / \sqrt{2}$

$$
w_{0}=\frac{1}{\sum_{i=0}^{n-1} \tau_{i}} \Rightarrow\left|\frac{V_{\text {out }}\left(w_{0}\right)}{V_{\text {in }}\left(w_{0}\right)}\right|=\left|\frac{K}{j 1+1}\right|=\frac{K}{\sqrt{2}}
$$

Bandwidth estimate found by inversing the sum of time constants!

Why Is This Approximation Reasonable?

- Consider a second order example:

$$
\frac{V_{\text {out }}\left(w_{0}\right)}{V_{\text {in }}\left(w_{0}\right)}=\frac{K}{\left(j \tau_{0} w_{0}+1\right)\left(j \tau_{1} w_{0}+1\right)}
$$

- Expanding:

$$
\frac{V_{\text {out }}\left(w_{0}\right)}{V_{\text {in }}\left(w_{0}\right)}=\frac{K}{-\tau_{0} \tau_{1} w_{0}^{2}+j\left(\tau_{0}+\tau_{1}\right) w_{0}+1}
$$

- But notice (since the time constant values are >0):

$$
j\left(\tau_{0}+\tau_{1}\right) w_{0}=j 1 \Rightarrow \tau_{0} w_{0}<1, \tau_{1} w_{0}<1
$$

- In fact: $\tau_{0} \tau_{1} w_{0}^{2} \leq 0.25$
- The worse case of $\tau_{0} \tau_{1} \omega_{0}{ }^{2}=0.25$ occurs when $\tau_{0}=\tau_{1}$:

$$
\left|\frac{V_{\text {out }}\left(w_{0}\right)}{V_{\text {in }}\left(w_{0}\right)}\right|=\left|\frac{K}{j 1+1-0.25}\right|=\frac{K}{\sqrt{1.56}} \approx \frac{K}{\sqrt{2}}
$$

- The approximation will be better for $\tau_{0} \neq \tau_{1}$

Key Issues For the OCT Approximation

- For the higher order transfer function

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{K}{\left(\tau_{0} s+1\right)\left(\tau_{1} s+1\right) \cdots\left(\tau_{n-1} s+1\right)}
$$

- The OCT approximation for bandwidth is

$$
B W \approx \frac{1}{\sum_{i=0}^{n-1} \tau_{i}} \mathrm{rad} / \mathrm{s}
$$

- As hinted at by our second order example:
- The OCT approximation will have much better accuracy if the time constants are different, and particularly if there is one dominant time constant
- The bandwidth estimate by the OCT method is typically conservative (i.e., actual bandwidth > OCT estimate)
- Complex poles can lead to actual bandwidth < OCT estimate But how do we compute $\sum_{i=0}^{n-1} \tau_{i}$?

OCT Method of Calculating the Sum of Time Constants

- OCT method calculates $\sum_{i=0}^{n-1} \tau_{i}$ by the following steps:
- Compute the effective resistance $\mathrm{R}_{\mathrm{thj}}$ seen by each capacitor, C_{j}, with other caps as open circuits
- AC coupling caps are not included - considered as shorts
- Form the "open circuit" time constant $T_{j}=R_{t h j} C_{j}$ for each capacitor C_{j}
- Sum all of the "open circuit" time constants
- As proved by Richard Adler at MIT

$$
\sum_{i=0}^{n-1} \tau_{i}=\sum_{j=1}^{m} R_{t h j} C_{j}
$$

- This implies that the sum of the transfer function pole time constants is the same as the sum of the open circuit time constants

$$
\Rightarrow B W \approx \frac{1}{\sum_{j=1}^{m} R_{t h j} C_{j}} \mathrm{rad} / \mathrm{s}
$$

How Do You Tell if a Cap is for AC coupling or OCT?

- In general, capacitors associated with AC coupling have the property that the amplifier gain increases as the capacitor goes from open to short
- These capacitors are simply assumed to be shorts for the OCT analysis
- In general, capacitors used in the OCT calculation have the property that the amplifier gain decreases as the capacitor goes from open to short
- These capacitors must all be considered in the OCT analysis

Example: Second Order RC Network

- Transfer function of the above network:

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{1}{R_{1} R_{2} C_{1} C_{2} s^{2}+\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right) s+1}
$$

- The sum of the time constants from the poles of the above network are obtained by inspection of the first order coefficient in the above transfer function

$$
\Rightarrow B W \approx \frac{1}{\sum_{i=0}^{n-1} \tau_{i}}=\frac{1}{R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}} \mathrm{rad} / \mathrm{s}
$$

- For more complex networks, the direct approach of explicitly calculating the transfer function is quite tedious

OCT Method Applied to Second Order RC Network

- Obtain the Thevenin resistance values seen by each capacitor with other capacitors as opens

$$
\begin{gathered}
R_{t h 1}=R_{1} \Rightarrow R_{t h 1} C_{1}=R_{1} C_{1} \\
R_{t h 2}=R_{1}+R_{2} \Rightarrow R_{t h 2} C_{2}=\left(R_{1}+R_{2}\right) C_{2}
\end{gathered}
$$

- Bandwidth estimate from OCT method:

$$
\Rightarrow B W \approx \frac{1}{\sum_{j=1}^{m} R_{t h j} C_{j}}=\frac{1}{R_{1} C_{1}+\left(R_{1}+R_{2}\right) C_{2}} \mathrm{rad} / \mathrm{s}
$$

- Note that OCT method agrees with estimate based on direct calculation of the transfer function, but is much faster!

Example: Common Source Amplifier

- Estimate the bandwidth of the above amplifier using the OCT method
- What capacitances should be considered?
- What Thevenin resistances must be calculated?

Key Capacitances for CMOS Devices

CMOS Hybrid- π Model with Caps (Device in Saturation)

$$
\begin{aligned}
& C_{\mathrm{gs}}=\mathrm{C}_{\mathrm{gc}}+\mathrm{C}_{\mathrm{ov}}=\frac{2}{3} \mathrm{C}_{\mathrm{ox}} \mathrm{~W}\left(\mathrm{~L}-2 \mathrm{~L}_{\mathrm{D}}\right)+\mathrm{C}_{\mathrm{ov}} \\
& \mathrm{C}_{\mathrm{gd}}=\mathrm{C}_{\mathrm{ov}} \\
& \mathrm{C}_{\mathrm{sb}}=\mathrm{C}_{\mathrm{jsb}} \quad \text { (area + perimeter junction capacitance) } \\
& \mathrm{C}_{\mathrm{db}}=\mathrm{C}_{\mathrm{jdb}} \quad \text { (area + perimeter junction capacitance) }
\end{aligned}
$$

Back to Common Source Amplifier

- Of the above capacitors, only $\mathrm{C}_{\mathrm{gs}}, \mathrm{C}_{\mathrm{gd}}$, and C_{db} must be considered
- C_{sb} is grounded on both sides
- Thevenin resistance calculations
- C_{db} : $\mathrm{R}_{\text {thd }} \| \mathrm{R}_{\mathrm{d}}$
- C_{gs} and C_{gd} : these involve new Thevenin resistance calculations

OCT Thevenin Resistance Calculations

- C_{gs} : Thevenin resistance between gate and source

$$
R_{t h_{g s}}=\frac{R_{S}\left(1+R_{D} / r_{o}\right)+R_{G}\left(1+\left(g_{m b}+1 / r_{o}\right) R_{S}+R_{D} / r_{o}\right)}{1+\left(g_{m}+g_{m b}\right) R_{S}+\left(R_{S}+R_{D}\right) / r_{o}}
$$

- C_{gd} : Thevenin resistance between gate and drain

$$
\begin{aligned}
& R_{t h_{g d}}=\left(R_{D}+R_{G}\right)\left(1-r_{o d s} / r_{o}\right)+r_{o d s} g_{m} R_{G} \\
& \text { where } r_{o d s}=r_{o} \| \frac{R_{D}}{1+\left(g_{m}+g_{m b}\right) R_{S}}
\end{aligned}
$$

OCT Calculations for Common Source Amplifier

- Estimated bandwidth from OCT method:

$$
B W \approx \frac{1}{\sum_{j=1}^{m} R_{t h j} C_{j}}=\frac{1}{\left(R_{t h_{d}} \| R_{d}\right) C_{d b}+R_{t h_{g d}} C_{g d}+R_{t h_{g s}} C_{g s}} \mathrm{rad} / \mathrm{s}
$$

- The above calculations are straightforward given the Thevenin resistance formulas for $\mathrm{R}_{\mathrm{thd}}, \mathrm{R}_{\mathrm{thgd}}$, and $\mathrm{R}_{\mathrm{thgs}}$

