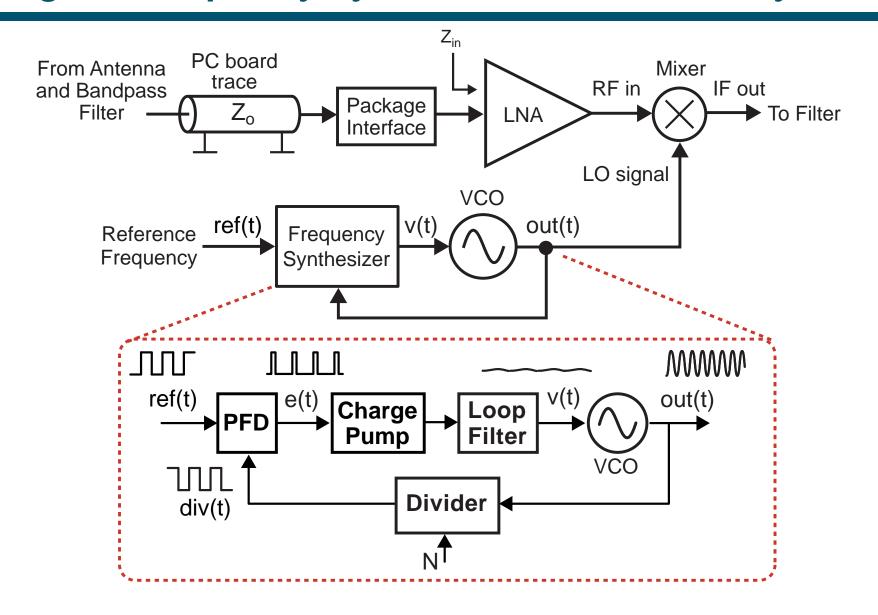
High Speed Communication Circuits and Systems Lecture 15 Integer-N Frequency Synthesizers

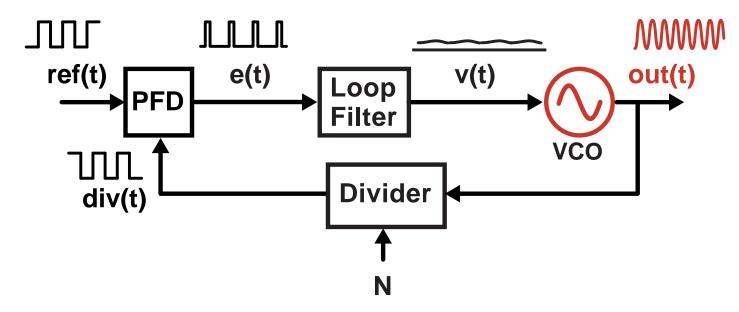
Michael H. Perrott March 31, 2004

Copyright © 2004 by Michael H. Perrott All rights reserved.

Integer-N Frequency Synthesizers in Wireless Systems

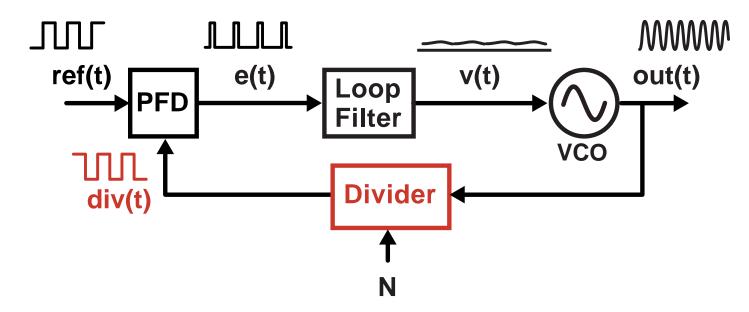


Design Issues: low noise, fast settling time, low power



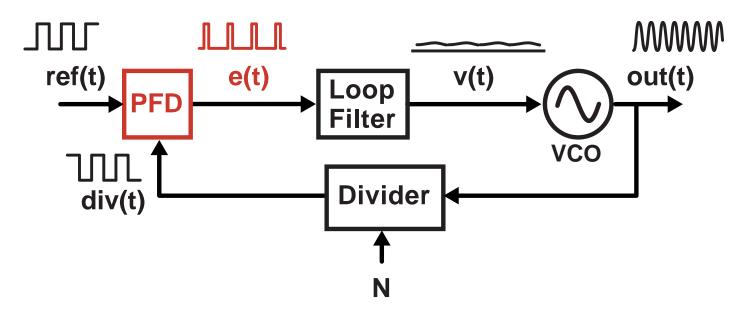
VCO

produces high frequency sine wave



VCO

- produces high frequency sine wave
- Divider
- divides down VCO frequency

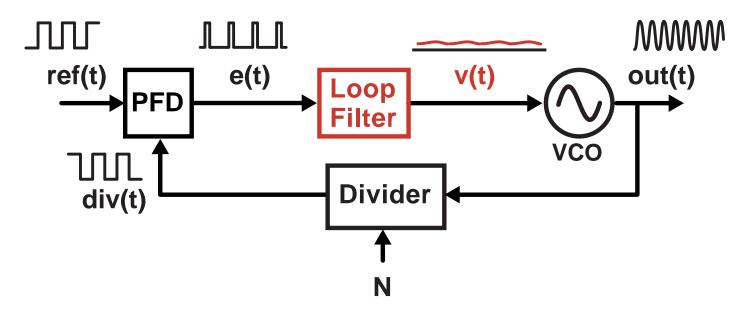


VCO

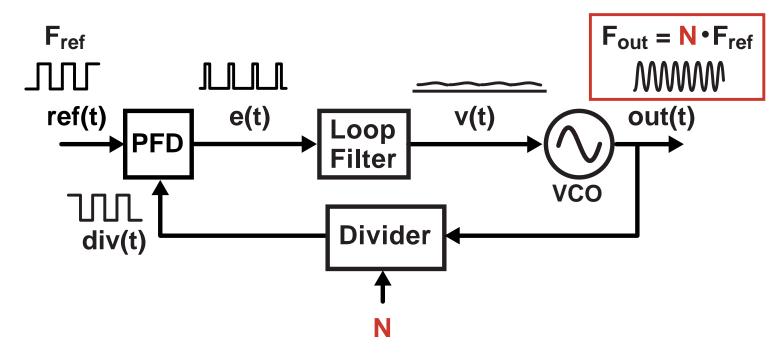
- produces high frequency sine wave
- Divider
- divides down VCO frequency

PFD

compares phase of ref and div



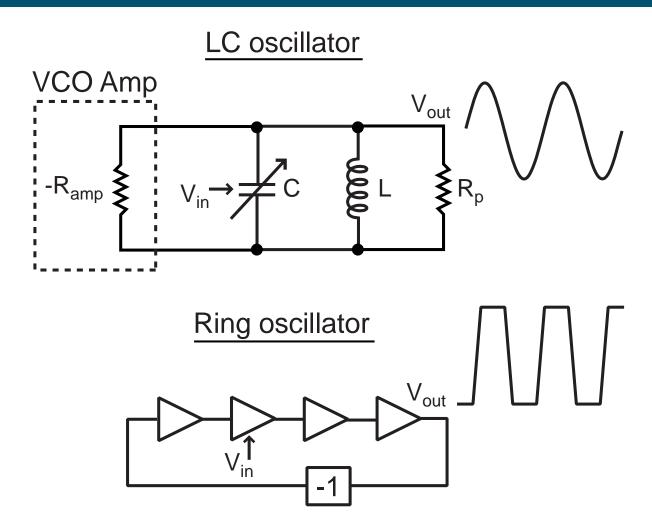
- VCO produces high frequency sine wave
- Divider divides down VCO frequency
- Loop filter smooths phase error signal



- VCO produces high frequency sine wave
- Divider divides down VCO frequency
- PFD compares phase of ref and div
- Loop filter smooths phase error signal

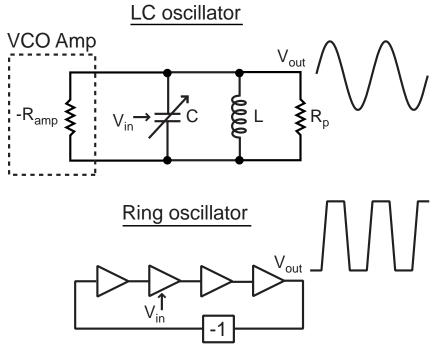
VCO frequency locks to ref. frequency multiplied by N

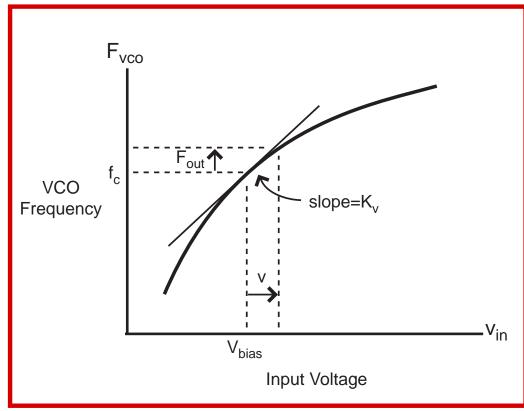
Popular VCO Structures



- LC Oscillator: low phase noise, large area
- Ring Oscillator: easy to integrate, higher phase noise

Model for Voltage to Frequency Mapping of VCO





$$F_{out}(t) = K_v v(t)$$

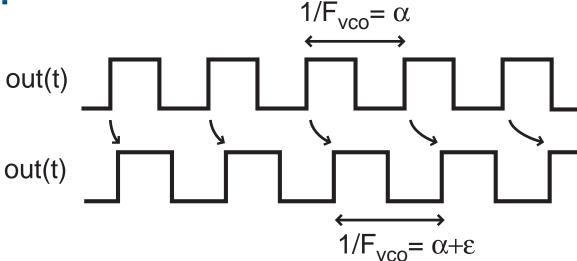
Model for Voltage to Phase Mapping of VCO

Time-domain frequency relationship (from previous slide) $F_{out}(t) = K_v v(t)$

Time-domain phase relationship

$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi F_{out}(\tau) d\tau = \int_{-\infty}^{t} 2\pi K_{v} v(\tau) d\tau$$

Intuition of integral relationship between frequency and phase:

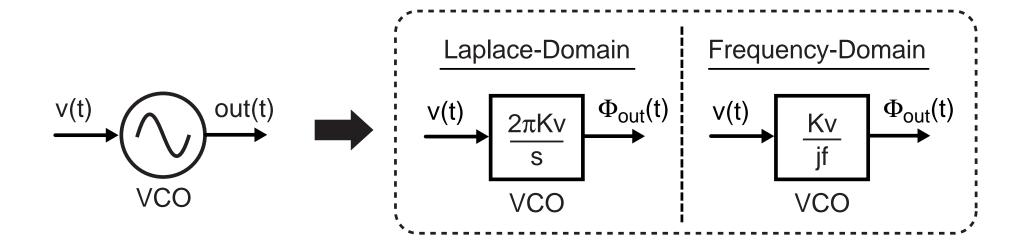


Frequency-Domain Model for VCO

Time-domain relationship (from previous slide)

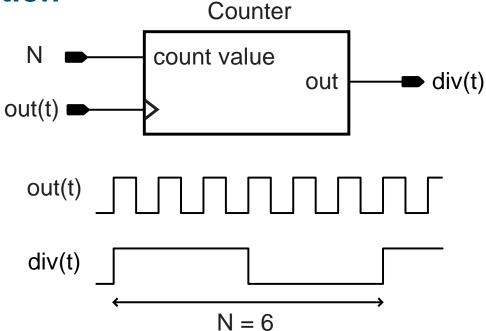
$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi K_v v(\tau) d\tau$$

Corresponding frequency-domain model



Divider

Implementation



- Time-domain model
 - Frequency:

$$F_{div}(t) = \frac{1}{N} F_{out}(t).$$

Phase:

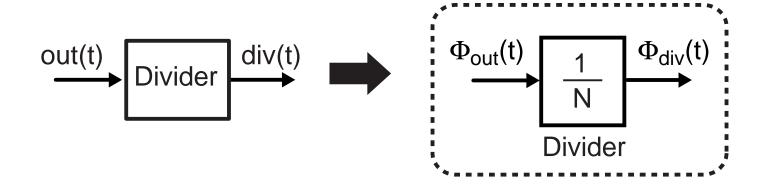
$$\Phi_{div}(t) = \int_{-\infty}^{t} 2\pi \frac{1}{N} F_{out}(\tau) d\tau = \frac{1}{N} \Phi_{out}(t)$$

Frequency-Domain Model of Divider

 Time-domain relationship between VCO phase and divider output phase (from previous slide)

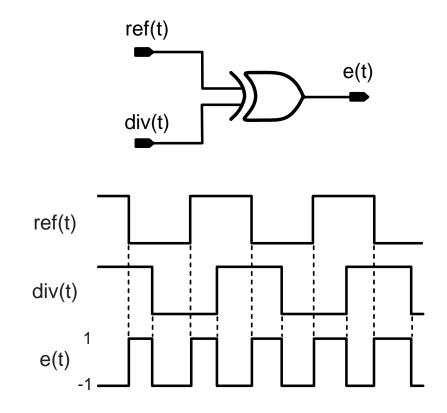
$$\Phi_{div}(t) = \frac{1}{N} \Phi_{out}(t)$$

 Corresponding frequency-domain model (same as Laplace-domain)



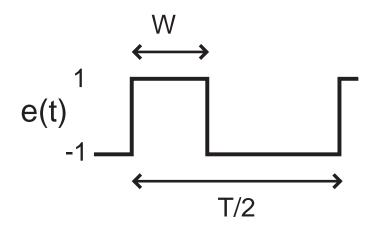
Phase Detector (PD)

- XOR structure
 - Average value of error pulses corresponds to phase error
 - Loop filter extracts the average value and feeds to VCO



Modeling of XOR Phase Detector

- Average value of pulses is extracted by loop filter
 - Look at detector output over one cycle:

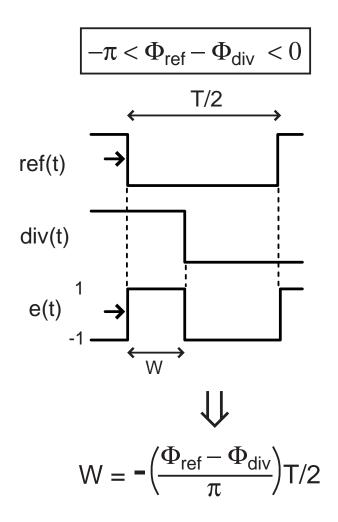


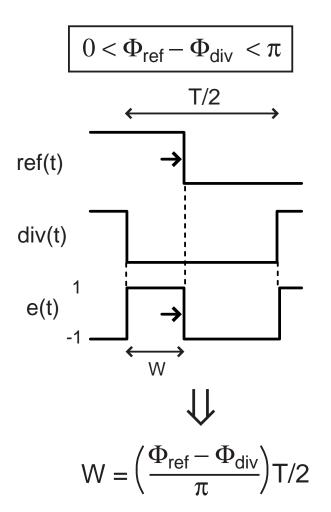
Equation:

$$avg\{e(t)\} = -1 + 2\frac{W}{T/2}$$

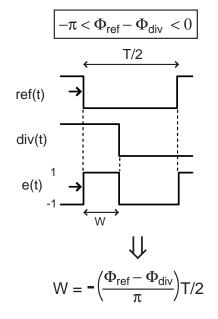
Relate Pulse Width to Phase Error

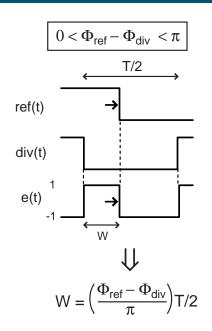
Two cases:

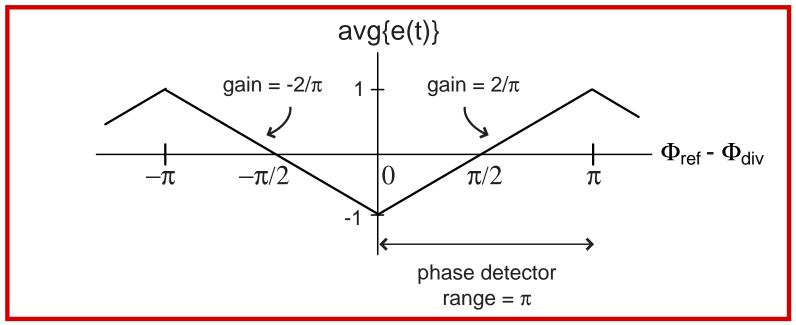




Overall XOR Phase Detector Characteristic

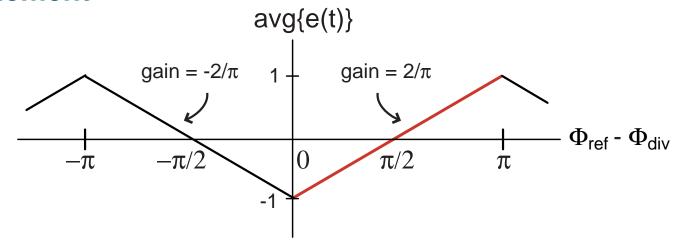




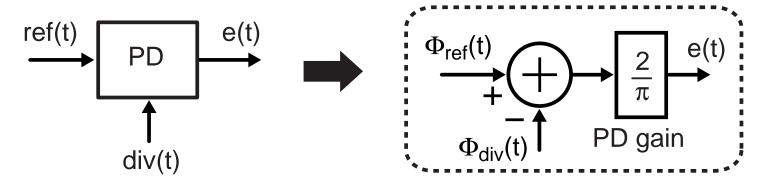


Frequency-Domain Model of XOR Phase Detector

- **Assume phase difference confined within 0 to \pi radians**
 - Phase detector characteristic looks like a constant gain element

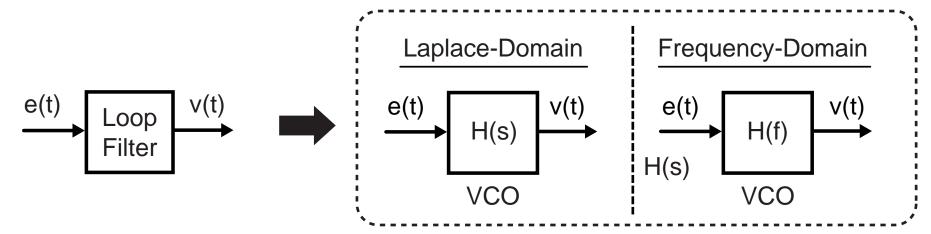


Corresponding frequency-domain model

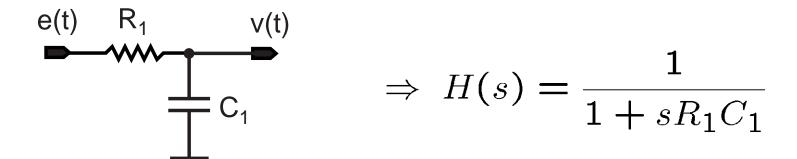


Loop Filter

- Consists of a lowpass filter to extract average of phase detector error pulses
- Frequency-domain model



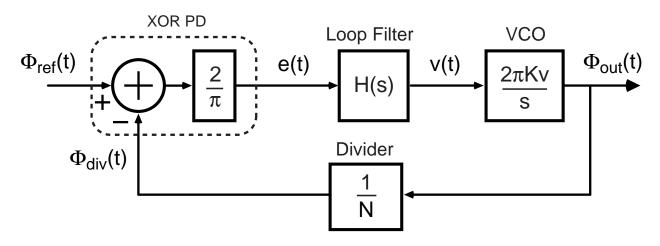
First order example



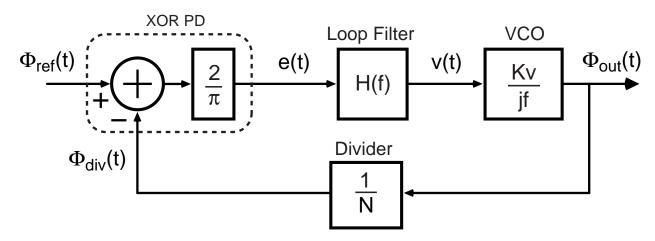
Overall Linearized PLL Frequency-Domain Model

Combine models of individual components

Laplace-Domain Model

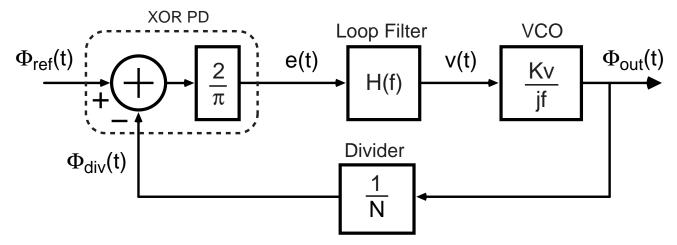


Frequency-Domain Model



Open Loop versus Closed Loop Response

Frequency-domain model



Define A(f) as open loop response

$$A(f) = \frac{2}{\pi}H(f)\left(\frac{K_v}{jf}\right)\frac{1}{N}$$

Define G(f) as a parameterizing function (related to closed loop response)

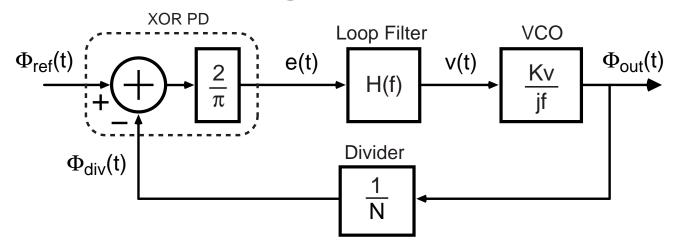
$$G(f) = \frac{A(f)}{1 + A(f)}$$

Classical PLL Transfer Function Design Approach

- 1. Choose an appropriate topology for H(f)
 - Usually chosen from a small set of possibilities
- 2. Choose pole/zero values for H(f) as appropriate for the required filtering of the phase detector output
 - Constraint: set pole/zero locations higher than desired PLL bandwidth to allow stable dynamics to be possible
- 3. Adjust the open-loop gain to achieve the required bandwidth while maintaining stability
 - Plot gain and phase bode plots of A(f)
 - Use phase (or gain) margin criterion to infer stability

Example: First Order Loop Filter

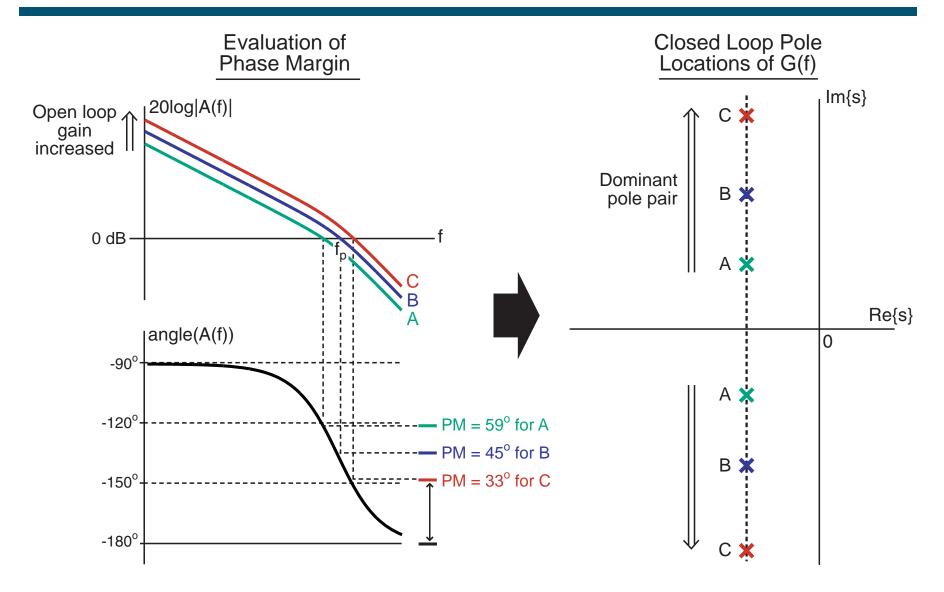
Overall PLL block diagram



Loop filter

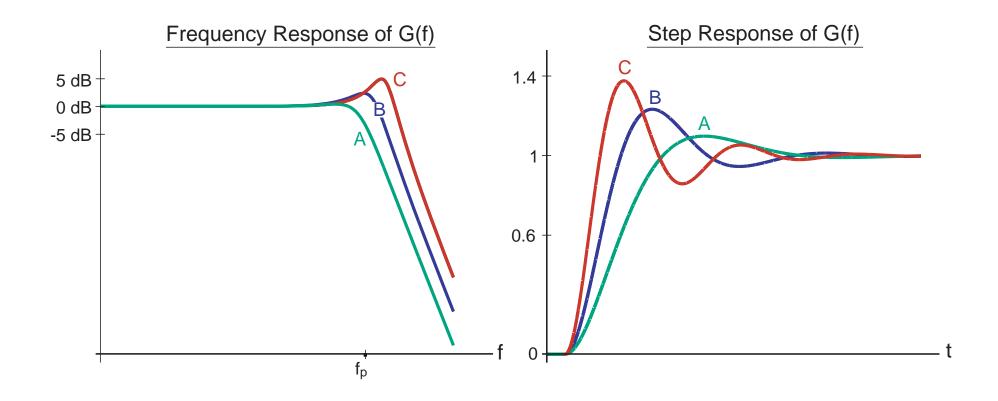
$$\Rightarrow H(f) = \frac{1}{1 + jf/f_p}$$

Closed Loop Poles Versus Open Loop Gain



 Higher open loop gain leads to an increase in Q of closed loop poles

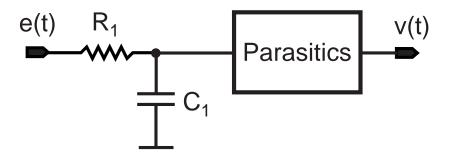
Corresponding Closed Loop Response



- Increase in open loop gain leads to
 - Peaking in closed loop frequency response
 - Ringing in closed loop step response

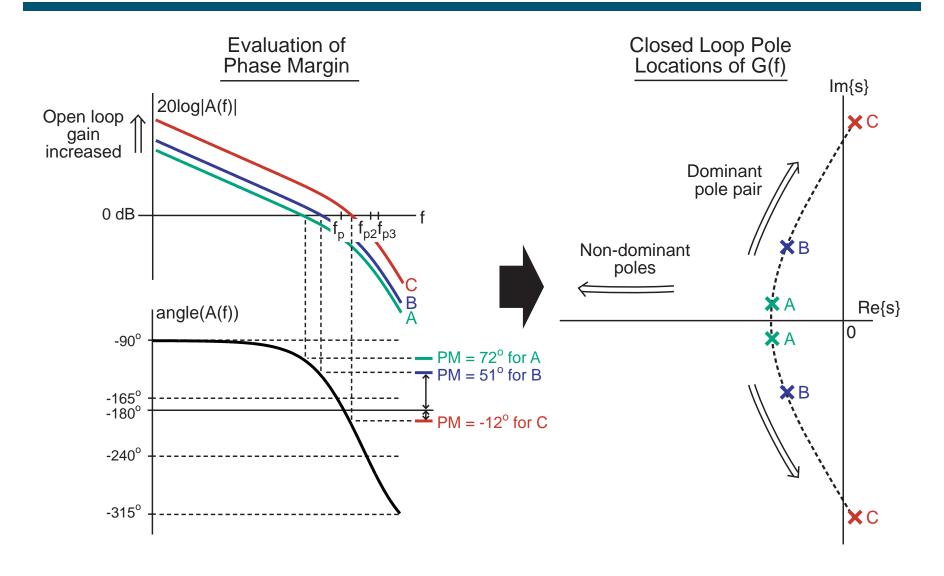
The Impact of Parasitic Poles

- Loop filter and VCO may have additional parasitic poles and zeros due to their circuit implementation
- We can model such parasitics by including them in the loop filter transfer function
- Example: add two parasitic poles to first order filter

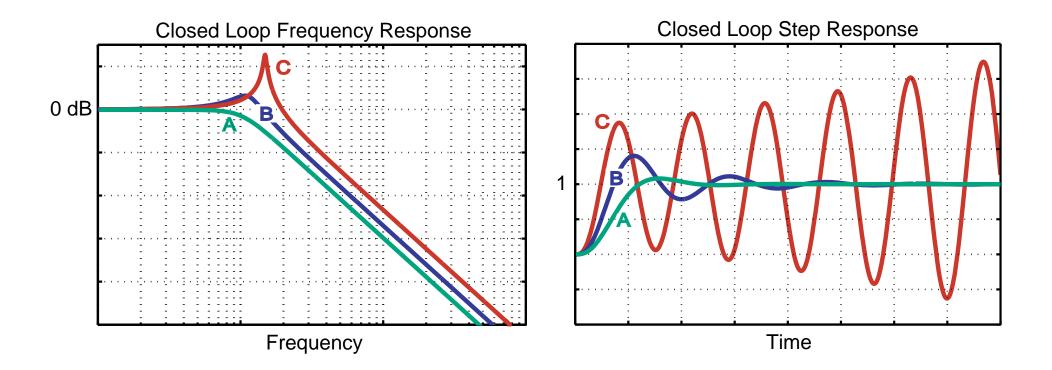


$$\Rightarrow H(f) = \left(\frac{1}{1 + jf/f_1}\right) \left(\frac{1}{1 + jf/f_2}\right) \left(\frac{1}{1 + jf/f_3}\right)$$

Closed Loop Poles Versus Open Loop Gain

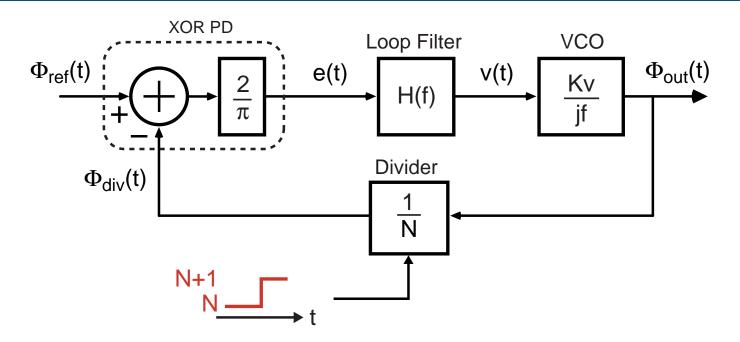


Corresponding Closed Loop Response



- Increase in open loop gain now eventually leads to instability
 - Large peaking in closed loop frequency response
 - Increasing amplitude in closed loop step response

Response of PLL to Divide Value Changes

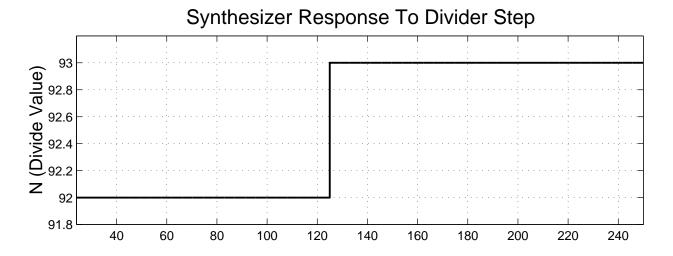


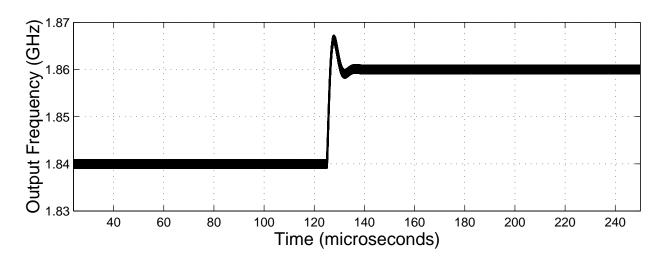
- Change in output frequency achieved by changing the divide value
- Classical approach provides no direct model of impact of divide value variations
 - Treat divide value variation as a perturbation to a linear system

PLL responds according to its closed loop response

Response of an Actual PLL to Divide Value Change

Example: Change divide value by one

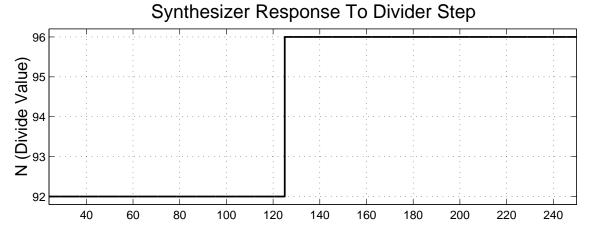


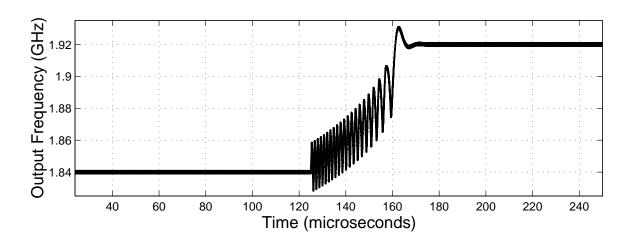


PLL responds according to closed loop response!

What Happens with Large Divide Value Variations?

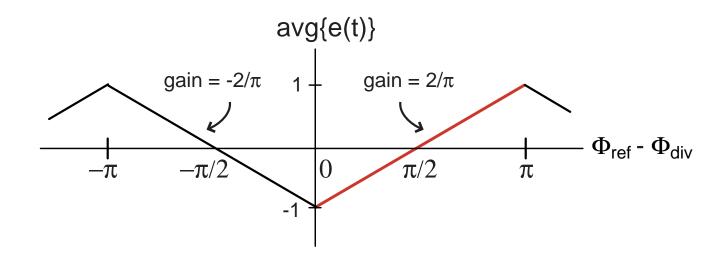
PLL temporarily loses frequency lock (cycle slipping occurs)





Why does this happen?

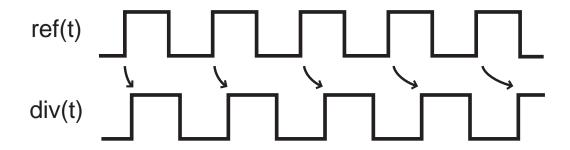
Recall Phase Detector Characteristic



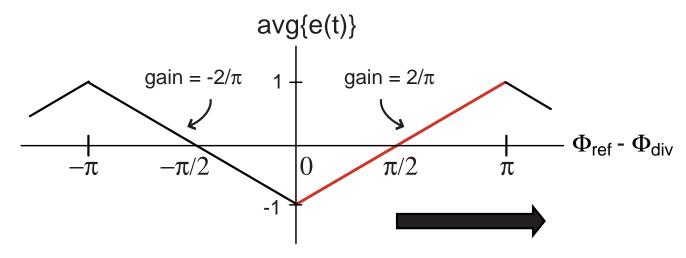
- To simplify modeling, we assumed that we always operated in a confined phase range (0 to π)
 - Led to a simple PD model
- Large perturbations knock us out of that confined phase range
 - PD behavior varies depending on the phase range it happens to be in

Cycle Slipping

- Consider the case where there is a frequency offset between divider output and reference
 - We know that phase difference will accumulate



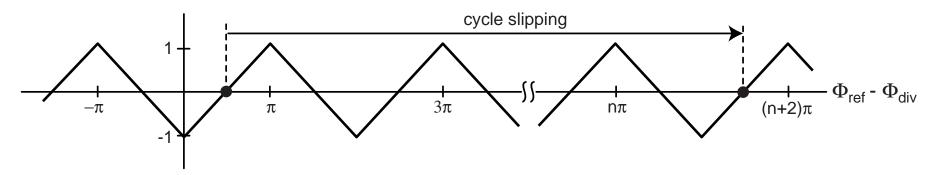
 Resulting ramp in phase causes PD characteristic to be swept across its different regions (cycle slipping)



Impact of Cycle Slipping

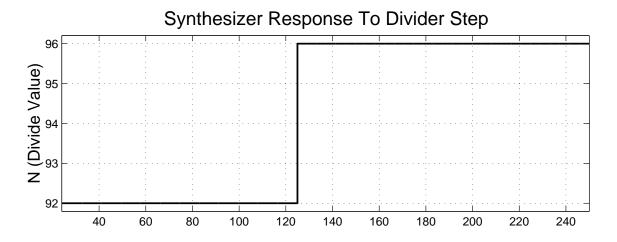
- Loop filter averages out phase detector output
- Severe cycle slipping causes phase detector to alternate between regions very quickly
 - Average value of XOR characteristic can be close to zero
 - PLL frequency oscillates according to cycle slipping
 - In severe cases, PLL will not re-lock
 - PLL has finite frequency lock-in range!

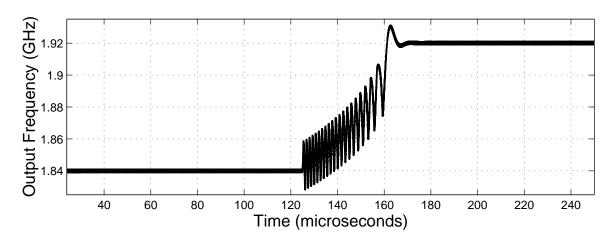
XOR DC characteristic



Back to PLL Response Shown Previously

- PLL output frequency indeed oscillates
 - Eventually locks when frequency difference is small enough

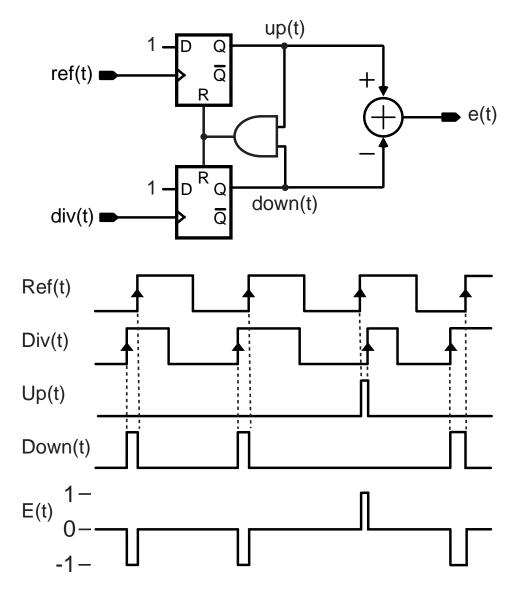




How do we extend the frequency lock-in range?

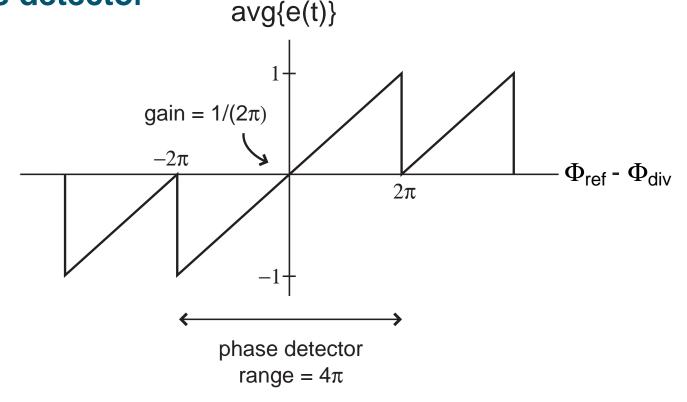
Phase Frequency Detectors (PFD)

Example: Tristate PFD



Tristate PFD Characteristic

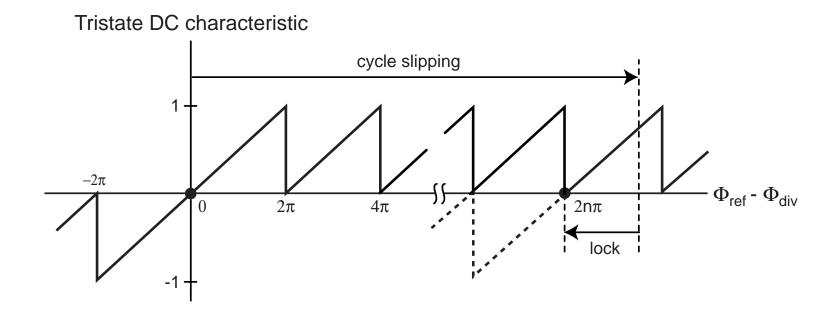
Calculate using similar approach as used for XOR phase detector



- Note that phase error characteristic is asymmetric about zero phase
 - Key attribute for enabling frequency detection

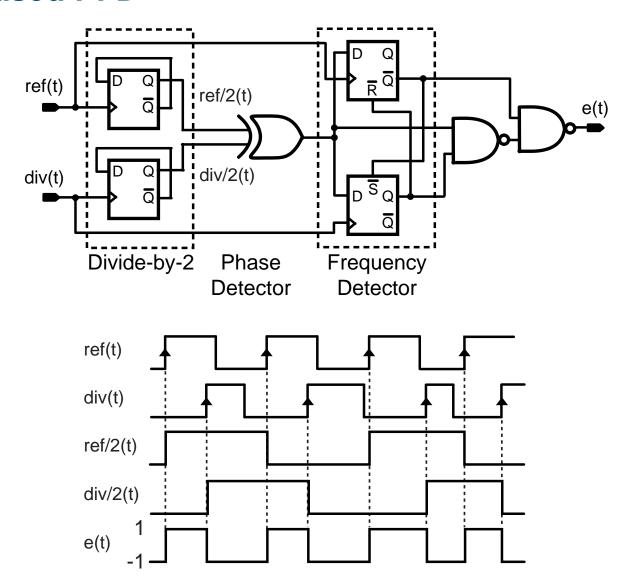
PFD Enables PLL to Always Regain Frequency Lock

- Asymmetric phase error characteristic allows positive frequency differences to be distinguished from negative frequency differences
 - Average value is now positive or negative according to sign of frequency offset
 - PLL will always relock



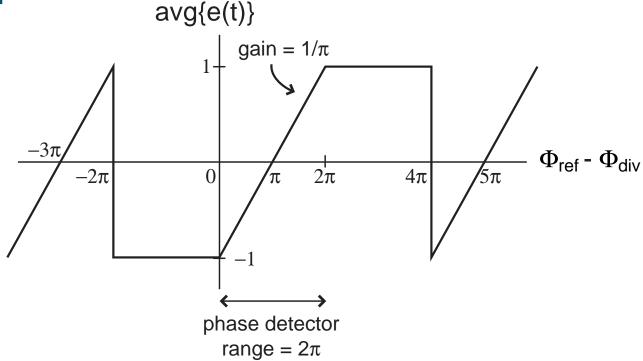
Another PFD Structure

XOR-based PFD



XOR-based PFD Characteristic

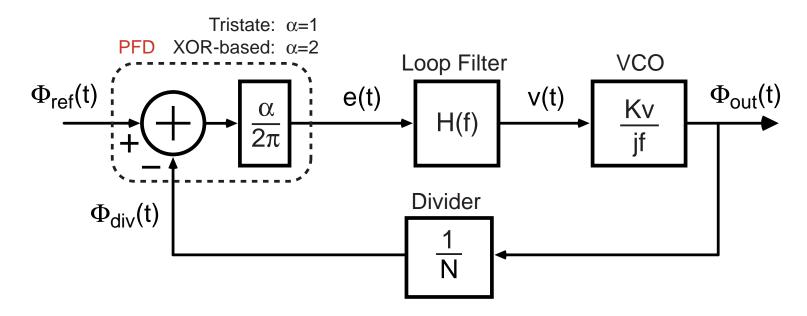
Calculate using similar approach as used for XOR phase detector



- Phase errror characteristic asymmetric about zero phase
 - Average value of phase error is positive or negative during cycle slipping depending on sign of frequency error

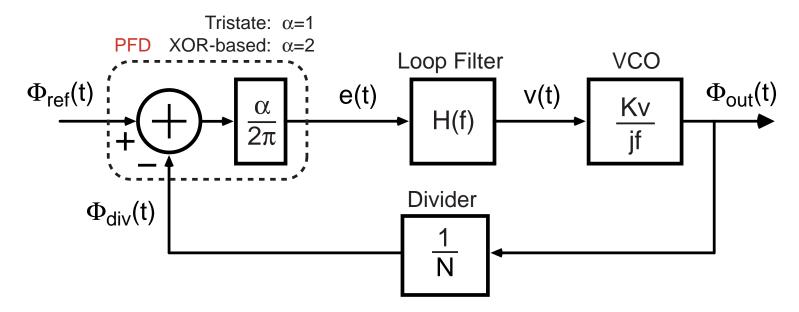
Linearized PLL Model With PFD Structures

- Assume that when PLL in lock, phase variations are within the linear range of PFD
 - Simulate impact of cycle slipping if desired (do not include its effect in model)
- Same frequency-domain PLL model as before, but PFD gain depends on topology used



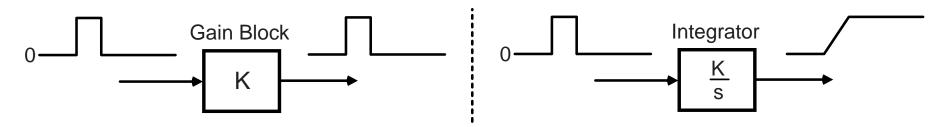
Type I versus Type II PLL Implementations

- Type I: one integrator in PLL open loop transfer function
 - VCO adds on integrator
 - Loop filter, H(f), has no integrators
- Type II: two integrators in PLL open loop transfer function
 - Loop filter, H(f), has one integrator

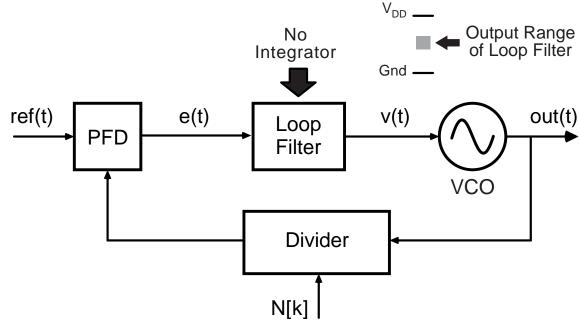


VCO Input Range Issue for Type I PLL Implementations

DC output range of gain block versus integrator

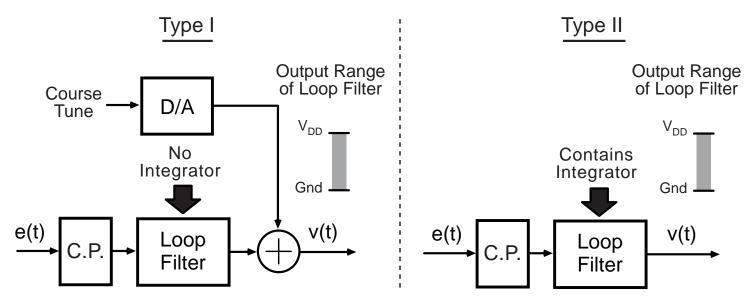


- Issue: DC gain of loop filter often small and PFD output range is limited
 - Loop filter output fails to cover full input range of VCO



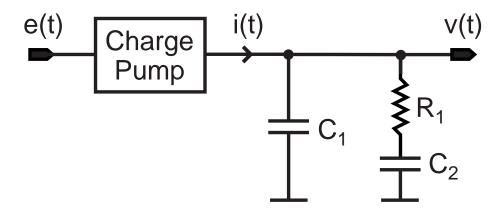
Options for Achieving Full Range Span of VCO

- Type I
 - Add a D/A converter to provide coarse tuning
 - Adds power and complexity
 - Steady-state phase error inconsistently set
- Type II
 - Integrator automatically provides DC level shifting
 - Low power and simple implementation
 - Steady-state phase error always set to zero



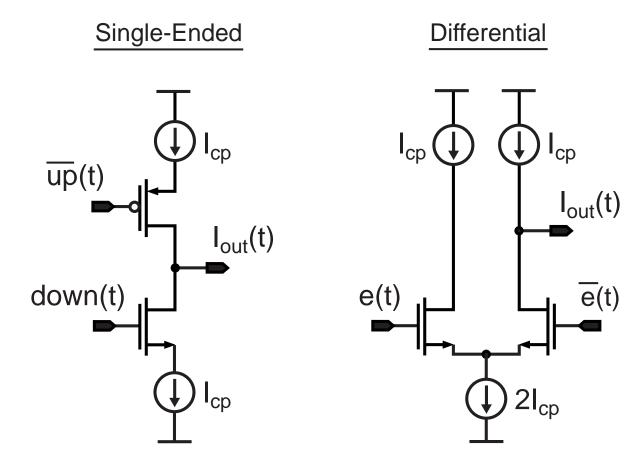
A Common Loop Filter for Type II PLL Implementation

- Use a charge pump to create the integrator
 - Current onto a capacitor forms integrator
 - Add extra pole/zero using resistor and capacitor
- Gain of loop filter can be adjusted according to the value of the charge pump current
- Example: lead/lag network



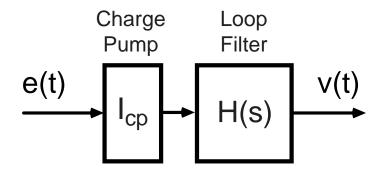
Charge Pump Implementations

Switch currents in and out:



Modeling of Loop Filter/Charge Pump

- Charge pump is gain element
- Loop filter forms transfer function



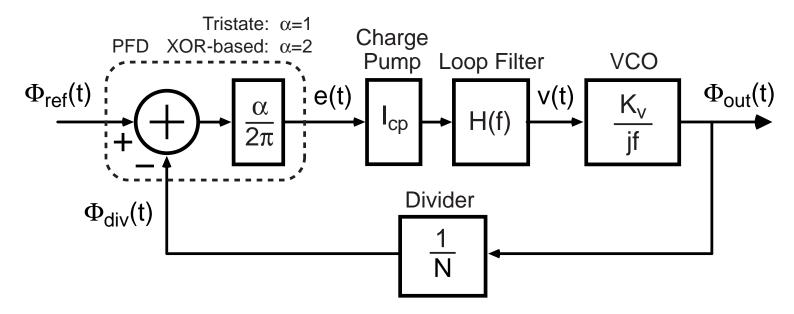
Example: lead/lag network from previous slide

$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p}$$

$$C_{sum} = C_1 + C_2, \quad f_z = \frac{1}{2\pi R_1 C_2}, \quad f_p = \frac{C_1 + C_2}{2\pi R_1 C_1 C_2}$$

PLL Design with Lead/Lag Filter

Overall PLL block diagram

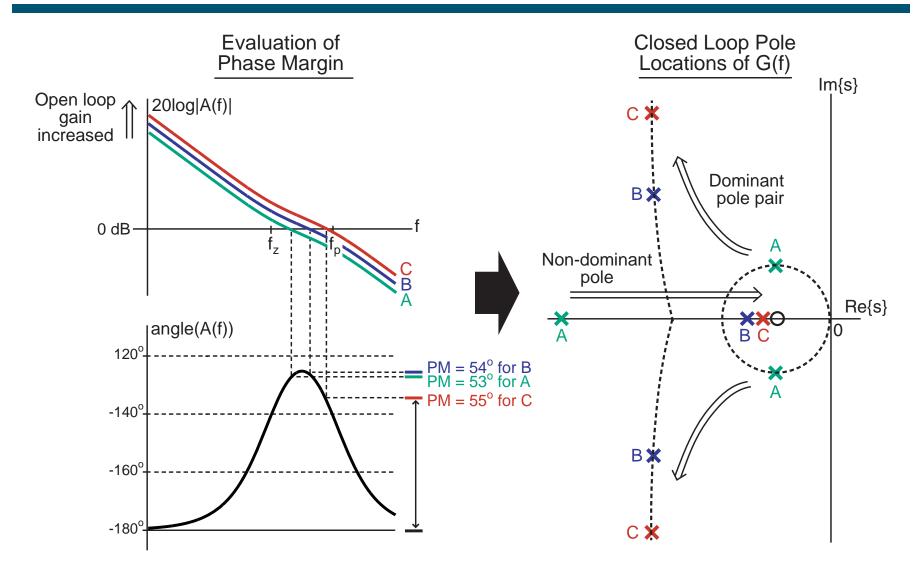


Loop filter

$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p}$$

- Set open loop gain to achieve adequate phase margin
 - Set f_z lower than and f_p higher than desired PLL bandwidth

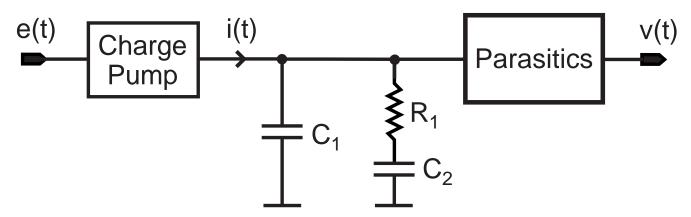
Closed Loop Poles Versus Open Loop Gain



 Open loop gain cannot be too low or too high if reasonable phase margin is desired

Impact of Parasitics When Lead/Lag Filter Used

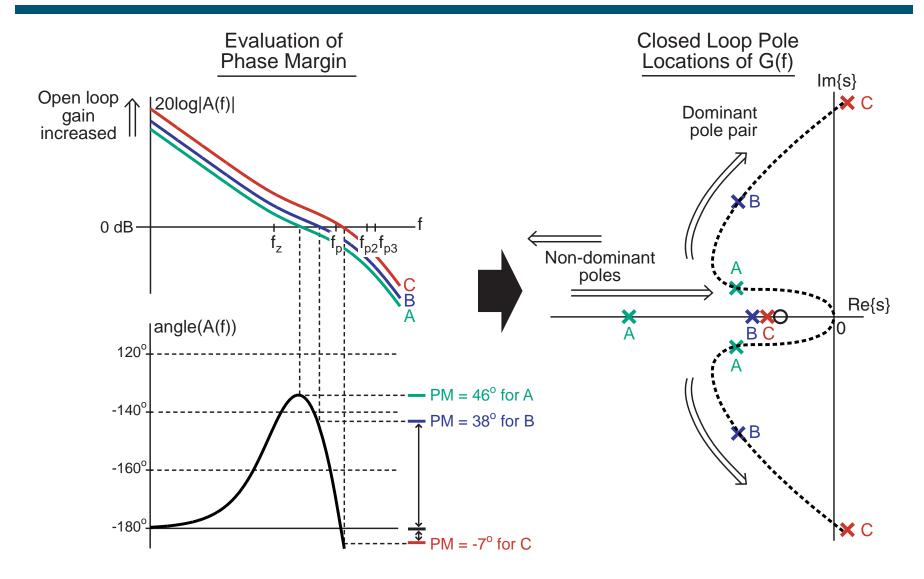
 We can again model impact of parasitics by including them in loop filter transfer function



Example: include two parasitic poles with the lead/lag transfer function

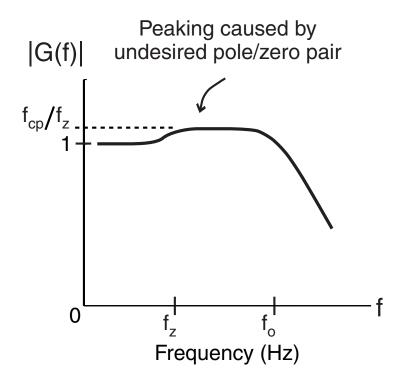
$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p} \left(\frac{1}{1 + jf/f_{p2}}\right) \left(\frac{1}{1 + jf/f_{p3}}\right)$$

Closed Loop Poles Versus Open Loop Gain

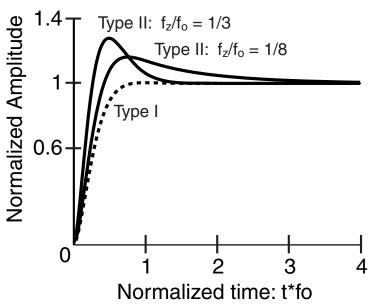


Closed loop response becomes unstable if open loop gain is too high

Negative Issues For Type II PLL Implementations



Step Responses for a Second Order G(f) implemented as a Bessel Filter



- Parasitic pole/zero pair causes
 - Peaking in the closed loop frequency response
 - A big issue for CDR systems, but not too bad for wireless
 - Extended settling time due to parasitic "tail" response
 - Bad for wireless systems demanding fast settling time