High Speed Communication Circuits and Systems Lecture 16 Noise in Integer-N Frequency Synthesizers

Michael H. Perrott April 4, 2003

Copyright © 2003 by Michael H. Perrott All rights reserved.

M.H. Perrott

Frequency Synthesizer Noise in Wireless Systems

Synthesizer noise has a negative impact on system

- Receiver lower sensitivity, poorer blocking performance
- Transmitter increased spectral emissions (output spectrum must meet a mask requirement)
- Noise is characterized in frequency domain

Noise Modeling for Frequency Synthesizers

- PLL has an impact on VCO noise in two ways
 - Adds extrinsic noise from various PLL circuits
 - Highpass filters VCO noise through PLL feedback dynamics
- Focus on modeling the above based on phase deviations
 - Simpler than dealing directly with PLL sine wave output

Phase Deviation Model for Noise Analysis

Model the impact of noise on instantaneous phase

Relationship between PLL output and instantaneous phase

$$out(t) = 2\cos(2\pi f_o t + \Phi_{out}(t))$$

Output spectrum (from Lecture 12)

$$S_{out}(f) = S_{sin}(f) + S_{sin}(f) * S_{\Phi_{out}}$$

Phase Noise Versus Spurious Noise

$$20\log\left(rac{d_{spur}}{2f_{spur}}
ight)\;\mathrm{dBc}$$

Sources of Noise in Frequency Synthesizers

- Extrinsic noise sources to VCO
 - Reference/divider jitter and reference feedthrough
 - Charge pump noise

M.H. Perrott

Modeling the Impact of Noise on Output Phase of PLL

Determine impact on output phase by deriving transfer function from each noise source to PLL output phase

There are a lot of transfer functions to keep track of!

Simplified Noise Model

- Refer all PLL noise sources (other than the VCO) to the PFD output
 - PFD-referred noise corresponds to the sum of these noise sources referred to the PFD output

Impact of PFD-referred Noise on Synthesizer Output

Transfer function derived using Black's formula

$$\frac{\Phi_{out}}{e_n} = \frac{I_{cp}H(f)K_v/(jf)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$

Impact of VCO-referred Noise on Synthesizer Output

Transfer function again derived from Black's formula

$$\frac{\Phi_{out}}{e_n} = \frac{1}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$

A Simpler Parameterization for PLL Transfer Functions

M.H. Perrott

Parameterize Noise Transfer Functions in Terms of G(f)

PFD-referred noise

$$\frac{\Phi_{out}}{e_n} = \frac{I_{cp}H(f)K_v/(jf)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{2\pi}{\alpha}N\frac{\alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{2\pi}{\alpha}N\frac{A(f)}{1 + A(f)} = \frac{2\pi}{\alpha}NG(f)$$

VCO-referred noise

$$\frac{\Phi_{out}}{\Phi_{vn}} = \frac{1}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{1}{1 + A(f)} = 1 - \frac{A(f)}{1 + A(f)} = 1 - G(f)$$

M.H. Perrott

Parameterized PLL Noise Model

- PFD-referred noise is lowpass filtered
- VCO-referred noise is highpass filtered
- Both filters have the same transition frequency values
 - Defined as f_o

Impact of PLL Parameters on Noise Scaling

PFD-referred noise is scaled by square of divide value and inverse of PFD gain

High divide values lead to large multiplication of this noise

VCO-referred noise is not scaled (only filtered) M.H. Perrott

Optimal Bandwidth Setting for Minimum Noise

- Optimal bandwidth is where scaled noise sources meet
 - Higher bandwidth will pass more PFD-referred noise
 - Lower bandwidth will pass more VCO-referred noise

Resulting Output Noise with Optimal Bandwidth

- PFD-referred noise dominates at low frequencies
 - Corresponds to close-in phase noise of synthesizer
- VCO-referred noise dominates at high frequencies
- Corresponds to far-away phase noise of synthesizer
 M.H. Perrott

Analysis of Charge Pump Noise Impact

We can refer charge pump noise to PFD output by simply scaling it by 1/I_{cp}

$$\frac{\Phi_{out}}{I_{cpn}} = \left(\frac{1}{I_{cp}}\right) \frac{\Phi_{out}}{e_n} = \left(\frac{1}{I_{cp}}\right) \frac{2\pi}{\alpha} NG(f)$$

Calculation of Charge Pump Noise Impact

Contribution of charge pump noise to overall output noise

$$S_{\Phi_{out}}(f) = \left(\frac{1}{I_{cp}}\right)^2 \left(\frac{2\pi}{\alpha}N\right)^2 |G(f)|^2 S_{I_{cpn}}(f) + \text{other sources}$$

Need to determine impact of I_{cp} on S_{Icpn}(f)

M.H. Perrott

Impact of Transistor Current Value on its Noise

- Charge pump noise will be related to the current it creates as $S_{I_{cpn}}(f) \propto \frac{\overline{I_d^2}}{\Delta f} = 4kT\gamma g_{do}$
- Recall that g_{do} is the channel resistance at zero V_{ds}
 - At a fixed current density, we have

$$g_{do} \propto W \propto I_d \Rightarrow \overline{I_d^2} \propto I_d$$

Impact of Charge Pump Current Value on Output Noise

Recall

$$S_{\Phi_{out}}(f) = \left(\frac{1}{I_{cp}}\right)^2 \left(\frac{2\pi}{\alpha}N\right)^2 |G(f)|^2 S_{I_{cpn}}(f) + \text{other sources}$$

Given previous slide, we can say

$$S_{I_{cpn}}(f) \propto I_{cpn}$$

- Assumes a fixed current density for the key transistors in the charge pump as I_{cp} is varied
- Therefore

$$S_{m{\Phi}_{out}}(f) igg|_{ ext{charge pump}} \propto rac{1}{I_{cp}}$$

- Want high charge pump current to achieve low noise
- Limitation set by power and area considerations

Impact of Synthesizer Noise on Transmitters

- Synthesizer noise can be lumped into two categories
 - Close-in phase noise: reduces SNR of modulated signal
 - Far-away phase noise: creates spectral emissions outside the desired transmit channel
 - This is the critical issue for transmitters

Impact of Remaining Portion of Transmitter

Power amplifier

- Nonlinearity will increase out-of-band emission and create harmonic content
- Band select filter
 - Removes harmonic content, but not out-of-band emission

Why is Out-of-Band Emission A Problem?

Near-far problem

- Interfering transmitter closer to receiver than desired transmitter
- Out-of-emission requirements must be stringent to prevent complete corruption of desired signal

Specification of Out-of-Band Emissions

- Maximum radiated power is specified in desired and adjacent channels
 - Desired channel power: maximum is M₀ dBm
 - Out-of-band emission: maximum power defined as integration of transmitted spectral density over bandwidth R centered at midpoint of each channel offset

Calculation of Transmitted Power in a Given Channel

- For simplicity, assume that the spectral density is flat over the channel bandwidth
 - Actual spectral density of signal often varies with frequency over the bandwidth of a given channel
- Resulting power calculation (single-sided S_x(f))

$$P_x = \int_{f_{mid}-R/2}^{f_{mid}+R/2} S_x(f) df \approx RS_x(f_{mid})$$

Express in dB (Note: dB(x) = 10log(x))

$$dB(P_x) \approx dB(RS_x(f_{mid})) = dB(S_x(f_{mid})) + dB(R)$$

Transmitter Output Versus Emission Specification

- Assume a piecewise constant spectral density profile for transmitter
 - Simplifies calculations
- Issue: emission specification is measured over a narrower band than channel spacing
 - Need to account for bandwidth discrepancy when doing calculations

Correction Factor for Bandwidth Mismatch

Calculation of maximum emission in offset channel 1

$$dB(S_{(Y_0+X_1)}R) \leq M_1$$

$$\Rightarrow dB\left(S_{(Y_0+X_1)}W\frac{R}{W}\right) \leq M_1$$

$$\Rightarrow dB\left(S_{(Y_0+X_1)}W\right) + dB\left(\frac{R}{W}\right) \leq M_1$$

$$\Rightarrow Y_0 + X_1 + dB\left(\frac{R}{W}\right) \leq M_1 \Rightarrow X_1 \leq M_1 - Y_0 + dB\left(\frac{W}{R}\right)$$

M.H. Perrott

Condition for Most Stringent Emission Requirement

- Out-of-band emission requirements are function of the power of the signal in the desired channel
 - For offset channel 1 (as calculated on previous slide)

$$X_1 \leq M_1 - Y_0 + \mathsf{dB}\left(\frac{W}{R}\right)$$

Most stringent case is when Y₀ maximum

$$\Rightarrow Y_0 = M_0$$

Table of Most Stringent Emission Requirements

Channel Offset	Mask Power	Emission Requirements (Most Stringent)
0	M ₀ dBm	$Y_0 = M_0$ (for most stringent case)
1	M ₁ dBm	$X_1 = M_1 - M_0 + dB(W/R) dB$
2	$M_2 dBm$	$X_2 = M_2 - M_0 + dB(W/R) dB$
3	M ₃ dBm	$X_3 = M_3 - M_0 + dB(W/R) dB$

(Note: $dB(W/R) = 10 \log(W/R)$)

Impact of Synthesizer Noise on Transmitter Output

Consider a spurious tone at a given offset frequency

Convolution with IF signal produces a replica of the desired signal at the given offset frequency

Impact of Synthesizer Phase Noise (Isolated Channel)

- Consider phase noise at a given offset frequency
 - Convolution with IF signal produces a smeared version of the desired signal at the given offset frequency
 - For simplicity, approximate smeared signal as shown

Impact of Synthesizer Phase Noise (All Channels)

- Partition synthesizer phase noise into channels
 - Required phase noise power (dBc) in each channel is related directly to spectral mask requirements
 - Exception is X₀ set by transmit SNR requirements

Synthesizer Phase Noise Requirements

Impact of channel bandwidth (offset channel 1)

$$\mathsf{dB}(S_{X_1}W) \leq X_1 \, \mathsf{dBc} \Rightarrow \mathsf{dB}(S_{X_1}) \leq X_1 - \mathsf{dB}(W) \, \mathsf{dBc/Hz}$$

Overall requirements (most stringent, i.e., Y₀ = M₀)

Channel Offset	Emission Requirements (Most Stringent)	Maximum Synth. Phase Noise (Most Stringent)	
0	$Y_0 = M_0$	set by required transmit SNR	
1	$X_1 = M_1 - M_0 + dB(W/R) dB$	X ₁ - dB(W) dBc/Hz	
2	$X_2 = M_2 - M_0 + dB(W/R) dB$	X ₂ -dB(W) dBc/Hz	
3	$X_3 = M_3 - M_0 + dB(W/R) dB$	X ₃ -dB(W) dBc/Hz	

M.H. Perrott

Example – DECT Cordless Telephone Standard

- Standard for many cordless phones operating at 1.8 GHz
- Transmitter Specifications
 - Channel spacing: W = 1.728 MHz
 - Maximum output power: M_o = 250 mW (24 dBm)
 - Integration bandwidth: R = 1 MHz
 - Emission mask requirements

f_{offset} (MHz)	Emission Mask (dBm)
0	$M_0 = 24 \text{ dBm}$
1.728	$M_1 = -8 \text{ dBm}$
3.456	$M_2 = -30 \text{ dBm}$
5.184	$M_3 = -44 \text{ dBm}$

Synthesizer Phase Noise Requirements for DECT

Using previous calculations with DECT values

Channel Offset	Mask Power	Maximum Synth. Noise Power in Integration BW	Maximum Synth. Phase Noise at Channel Offset
0	24 dBm	set by required transmit SNR	
1.728 MHz	-8 dBm	X ₁ = -29.6 dBc	-92 dBc/Hz
3.456 MHz	-30 dBm	X ₂ = -51.6 dBc	-114 dBc/Hz
5.184 MHz	-44 dBm	X ₃ = -65.6 dBc	-128 dBc/Hz

Graphical display of phase noise mask

Critical Specification for Phase Noise

- Critical specification is defined to be the one that is hardest to meet with an assumed phase noise rolloff
 - Assume synthesizer phase noise rolls off at -20 dB/decade
 - Corresponds to VCO phase noise characteristic
- For DECT transmitter synthesizer
 - Critical specification is -128 dBc/Hz at 5.184 MHz offset

Receiver Blocking Performance

- Radio receivers must operate in the presence of large interferers (called blockers)
- Channel filter plays critical role in removing blockers
 - Passes desired signal channel, rejects interferers

Impact of Nonidealities on Blocking Performance

- Blockers leak into desired band due to
 - Nonlinearity of LNA and mixer (IIP3)
 - Synthesizer phase and spurious noise

In-band interference cannot be removed by channel filter! M.H. Perrott

Quantifying Tolerable In-Band Interference Levels

- Digital radios quantify performance with bit error rate (BER)
 - Minimum BER often set at 1e-3 for many radio systems
 - There is a corresponding minimum SNR that must be achieved
- Goal: design so that SNR with interferers is above SNR_{min}

Impact of Synthesizer on Blockers

- Synthesizer passes desired signal and blocker
 - Assume blocker is Y dB higher in signal power than desired signal

Impact of Synthesizer Spurious Noise on Blockers

- Spurious tones cause the blocker (Y dB) (and desired) signals to "leak" into other frequency bands
 - In-band interference occurs when spurious tone offset frequency is same as blocker offset frequency
 - Resulting SNR = -X-Y dB with spurious tone (X dBc)

Impact of Synthesizer Phase Noise on Blockers

Same impact as spurious tone, but blocker signal is "smeared" by convolution with phase noise

 For simplicity, ignore "smearing" and approximate as shown above

Blocking Performance Analysis (Part 1)

- Ignore all out-of-band energy at the IF output
 - Assume that channel filter removes it
 - Motivation: simplifies analysis

Blocking Performance Analysis (Part 2)

- Consider the impact of blockers surrounding the desired signal with a given phase noise profile
 - SNR_{min} must be maintained
 - Evaluate impact on SNR one blocker at a time

Blocking Performance Analysis (Part 3)

Blocking Performance Analysis (Part 4)

Example – DECT Cordless Telephone Standard

- Receiver blocking specifications
 - Channel spacing: W = 1.728 MHz
 - Power of desired signal for blocking test: -73 dBm
 - Minimum bit error rate (BER) with blockers: 1e-3
 - Sets the value of SNR_{min}
 - Perform receiver simulations to determine SNR_{min}
 - Assume SNR_{min} = 15 dB for calculations to follow
 - Strength of interferers for blocking test

f_{offset} (MHz)	Blocker Power (dBm)	Relative Strength
1.728	-58 dBm	$Y_1 = 15 \text{ dB}$
3.456	-39 dBm	$Y_2 = 34 \text{ dB}$
5.184	-33 dBm	$Y_3 = 40 \text{ dB}$

Synthesizer Phase Noise Requirements for DECT

M.H. Perrott

Graphical Display of Required Phase Noise Performance

Mark phase noise requirements at each offset frequency

- Calculate critical specification for receive synthesizer
 - Critical specification is -117 dBc/Hz at 5.184 MHz offset
 - Lower performance demanded of receiver synthesizer than transmitter synthesizer in DECT applications!