High Speed Communication Circuits and Systems Lecture 22 Delay Locked Loops and High Speed Circuit Highlights

Michael H. Perrott April 28, 2004

Copyright © 2004 by Michael H. Perrott All rights reserved.

M.H. Perrott

Recall the CDR Model (Hogge Det.) From Lecture 21

- Similar to frequency synthesizer model except
 - No divider
 - Phase detector gain depends on the transition density of the input data

Key Observation: Must Use a Type II Implementation

Integrator in H(s) forces the steady-state phase error to zero

Important to achieve aligned clock and to minimize jitter

M.H. Perrott

Issue: Type II System Harder to Design than Type I

A stabilizing zero is required

Undesired closed loop pole/zero doublet causes peaking M.H. Perrott

Delay Locked Loops

Delay element used in place of a VCO

- No integration from voltage input to phase output
- System is Type 1

M.H. Perrott

System Design Is Easier Than For CDR

Example Delay-Locked Loop Implementation

- Assume an input clock is provided that is perfectly matched in frequency to data sequence
 - However, phase must be adjusted to compensate for propagation delays between clock and data on the PC board
- A variable delay element is used to lock phase to appropriate value
 - Phase detector can be similar to that used in a CDR
 - Hogge, Bang-Bang, or other structures possible

The Catch

- Delay needs to support an infinite range if system to be operated continuously
 - Can otherwise end up at the end of range of delay element
 - Won't be able to accommodate temperature variations
- Methods have been developed to achieve infinite range delay elements
 - Efficient implementation of such delay elements is often the key issue for high performance designs

The Myth

- Delay locked loop designers always point to jitter accumulation problem of phase locked loops
 - Implication is that delay locked loops can achieve much lower jitter than clock and data recovery circuits
- The reality: phase locked loops can actually achieve lower jitter than delay locked loops
 - PLL's can clean up high frequency jitter of input clock
 - Whether a PLL or DLL is better depends on application (and achievable VCO performance)

One Method of Achieving Infinite Delay

 $\cos(2\pi f_{in}t + \phi) = \cos(2\pi f_{in}t)\cos(\phi) - \sin(2\pi f_{in}t)\sin(\phi)$

Phase shift of a sine wave can be implemented with I/Q modulation

$$I = \cos(\Phi), \quad Q = \sin(\Phi)$$

- Note: infinite delay range allows DLL to be used to adjust frequency as well as phase
 - Phase adjustment now must vary continuously
 - Hard to get low jitter in practical implementations

Conceptual Implementation of Infinite Delay Range

Practical designs often implement cos(Φ) and sin(Φ) signals as phase shifted triangle waves

M.H. Perrott

Some References on CDR's and Delay-Locked Loops

- Tom Lee et. al. were pioneers of the previous infinite range DLL approach
 - See T. Lee et. al., "A 2.5 V CMOS Delay-Locked Loop for an 18 Mbit, 500 Megabyte/s DRAM", JSSC, Dec 1994
- Check out papers from Mark Horowitz's group at Stanford
 - Oversampling data recovery approach
 - See C-K K. Yang et. al., "A 0.5-um CMOS 4.0-Gbit/s Serial Link Transceiver with Data Recovery using Oversampling", JSSC, May 1998
 - Multi-level signaling
 - See Ramin Farjad-Rad et. al., "A 0.3-um CMOS 8-Gb/s 4-PAM Serial Link Transceiver", JSSC, May 2000
 - Bi-directional signaling
 - See E. Yeung, "A 2.4 Gb/s/pin simultaneous bidirectional parallel link", JSSC, Nov 2000

High Speed Circuit Highlights

Examine Techniques from a Few Recent Papers

- Circuit architectures utilizing circular topologies
 - "A 40-Gb/s Clock and Data Recovery Circuit in 0.18-um CMOS Technology", Jri Lee and Behzad Razavi, JSSC, Dec. 2003
 - "Fully Integrated CMOS Power Amplifier Design Using the Distributed Active-Transformer Architecture", Ichiro Aoki, ..., Ali Hajimiri, JSSC, March 2002
 - "A Circular Standing Wave Oscillator", W. Andress, Donhee Ham, ISSCC 2004
 - Donhee will talk about this (and other things) in his guest lecture
- Low Noise, High Bandwidth Sigma-Delta Fractional-N Frequency Synthesizers
 - "A Fractional-N Frequency Synthesizer Architecture Utilizing a Mismatch Compensated PFD/DAC Structure
 "Scott Moninger, Michael Perrott, TCASIL, New 2003
 - ...", Scott Meninger, Michael Perrott, TCASII, Nov 2003

A 40 Gb/s CDR in 0.18u CMOS! (Razavi et. al.)

Achieves high speed operation using interleaving

- 4 parallel 10 Gb/s detectors are fed by an 8-phase VCO
 - 4 phases used for sampling registers
 - 4 phases used for bang-bang phase detection registers

Key challenges

- Low jitter and low mismatch between clock phases
 - We will look at this issue in detail here
- Achievement of 10 Gb/s sampling/bang-bang detection

The Need for Low Mismatch Between Clock Phases

8-phases generated by 4 VCO clock signals and their complements

Desired spacing between clock signals is only 12.5 ps!

- Must meet setup and hold times of each 10 Gb/s sampler and phase detector register (limited by 0.18u technology)
- Mismatch and jitter on clock phases quickly eats into any margin left over after meeting setup/hold times
 - Unacceptable bit error rates can easily result

A Method to Generate Clock Phases

- Use transmission delay lines to generate each phase
- Advantage over using buffers as delay elements
 - Wide bandwidth and lower noise
 - Mismatch only a function of geometry variation
 - Buffer mismatch a function of both geometry and device variation (i.e., doping variation, etc.)
- Issue: transmission line is big
 - Loss (and finite bandwidth) due to finite resistance of metal
 - Long distance between clock phase outputs undesirable

Realize a Lumped Parameter Version of Trans. Line

Approximate transmission line as an LC ladder network

- Allows a much more compact implementation
- Offers the same advantage of having mismatch depend only on geometry
- Issue: now that mismatch has been dealt with, how do we achieve low jitter?

- Can satisfy Barkhausen criterion by inverting output of line and feeding back to the input
 - Looks a bit like a ring oscillator, but much better phase noise performance

Sustain Oscillation by Including Negative Resistance

- Place negative resistance at each phase to keep amplitudes identical
 - Must be careful to minimize impact on mismatch
- Issue: how do you match feedback path from CLK₁₈₀ to CLK₀ with other phases?

Use a Circular Geometry!

Note use of differential inductors, etc.

M.H. Perrott

Other Nice Nuggets in the Razavi Paper

- Phase detection using 4 bang-bang detectors
 - Clever combining of individual detectors to create an overall control voltage
 - Note: Bang-bang detection linearized by metastable behavior of registers
- Achievement of 10 Gb/s registers in 0.18u CMOS
 - Leverages a large amplitude clock signal using a tuned
 VCO buffer
 - Uses SCL registers with resistor loads bottom current sources eliminated to leverage large amplitude clock
- Fast XOR gate and amplifier structures

Take a look at the paper for more details:"A 40-Gb/s Clock and Data Recovery Circuit in 0.18-umCMOS Technology", Jri Lee and Behzad Razavi, JSSC, Dec. 2003

A 2 Watt, 2.4 GHz CMOS Power Amplifier (Hajimiri et. al.)

- Key issue facing CMOS power amps:
 - Breakdown voltage is too low for transistors with sufficient speed
 - Example
 - 0.35u CMOS limited to about a 3V supply
 - To keep in M₁ in saturation, assume we need V_{out} > 0.5 V

$$\implies P_{out} \le \frac{((3.0 - 0.5)/\sqrt{2})^2}{R_L} = \frac{2.5^2}{2 \cdot 50\Omega} = 63 \text{mW}$$

Key Idea: Use a Transformer!

To achieve 1 Watt at the output, we need:

$$Z_{in} \le \frac{((3.0 - 0.5)/\sqrt{2})^2}{P_{out}} = \frac{2.5^2}{2 \cdot 1 \text{ Watt}} = 3.1 \Omega$$

- We know that: $Z_{in} = \frac{1}{n^2} R_L$
- Therefore, setting n = 4 is adequate:

$$n = 4 \Rightarrow Z_{in} = \frac{1}{4^2} 50\Omega = 3.1\Omega$$

A Practical Issue for High Frequency Transformers

- High frequency transformers are formed by coupled inductors
 - Will typically have a net inductive impedance at the operating frequency (assuming self-resonant frequency is well above operating frequency)

Use a capacitor to resonate out the inductive component of Z_{in} at the desired frequency

The Issue of Bondwires

- The presence of bondwires will alter the impedance seen by the transistor
 - Would prefer to desensitize the circuit to the bondwire inductances

The Fix

- A differential topology places the bondwire nodes at incremental ground
 - Bondwire inductance now has little impact

How Do We Implement the Transformer?

Classical options

- Spiral 1:n transformer
 - Problem: very lossy

Resonant L-match or π **-match transformer**

Problem: still too lossy (though better than a spiral transformer)

A novel approach by Aoki & Hajimiri: Create a distributed, active transformer

A 1:4 Transformer Achieved Using Four 1:1 Sections

- 1:1 transformers can be implemented much more efficiently than their 1:4 counterparts
 - Winding ratio is one-to-one, and integrated processes allow very close proximity between the two windings
- Cascading of the secondary windings leads to their output voltages being summed
 - Net effect is a 1:4 transformer!

Implementation of 1:1 Transformer Sections

High efficiency using slab (i.e. straight wire) inductors

Avoids inefficiency of current crowding at corners of windings M.H. Perrott **Problem:** Long Wires Required for Diff. Pair Elements

- The use of slab inductors would seem to imply that an equally long return path for the current is required
 - Implies that long wires are required for connection to capacitor and differential pair transistors
 - Issue: loss and undesired inductance

A Clever Fix: Redefine The Differential Pairs

- Observation: neighbors of adjoining transformer sections have opposite signaling on their transistor gates
 - Can define differential pairs to be between the sections rather than within each section
 - Short wires can now be achieved for capacitor and transistors

Issue: what do you do about the ends?

Use a Circular Topology!

Removes the end effects!
M.H. Perrott

Other Issues to Consider

- Efficient achievement of 50 Ohm matching at the input of the amplifier
- Efficiency calculations
- Input power distribution
- Harmonic suppression

Take a look at the paper for more details: "Fully Integrated CMOS Power Amplifier Design Using the Distributed Active-Transformer Architecture", Ichiro Aoki, Scott Kee, David Rutledge, Ali Hajimiri, JSSC, March 2002

Wide Bandwidth, Low Noise Fractional-N Synthesizers

Fractional-N frequency synthesis

- Achieves very high frequency resolution
- There is a noise/bandwidth tradeoff

The Issue of Quantization Noise

- Divide value dithering introduces noise
- Sigma-Delta modulation shapes noise to high frequencies

M.H. Perrott

Impact of Σ - Δ Quantization Noise on Synth. Output

• Lowpass action of PLL dynamics suppresses the shaped Σ - Δ quantization noise

Impact of Increasing the PLL Bandwidth

Higher PLL bandwidth leads to less quantization noise suppression

There is a direct trade-off between PLL bandwidth and jitter

Method 1 of Reducing Quantization Noise

- Lower quantization step size by switching between multiple phases of the VCO output
 - Generate phases by using a ring oscillator or delay locked loop
- Issue: noise induced by mismatch between phases

Method 2 of Reducing Quantization Noise

- Use classical fractional-N approach of "phase interpolation" to cancel out quantization noise
 - Use a D/A converter matched to PFD/Charge Pump output
- Issue: limited by mismatch between gain of D/A and PFD/Charge Pump output and nonlinearity in D/A

M.H. Perrott

Comparison of Approaches

"Vertical" approach

Which Is Best?

- Phase shifting
 - Limited by number of phases that can be generated and their mismatch
 - Ring oscillators have poor phase noise
- Phase interpolation
 - Limited by ability to match DAC output to that of the PFD/Charge pump
 - High spurious noise can result due to DAC nonlinearity

Key observation

- Phase interpolation allows us to take advantage of advances in DAC design over the last 20 years
 - We can now largely overcome the above limitations!

Two Recent Approaches to the Cancellation Method

- "A Wideband 2.4-GHz Delta-Sigma Fractional-N PLL With 1-Mb/s In-Loop Modulation", Sudhakar Pamarti and Ian Galton, JSSC, Nov 2004
 - Impact of DAC mismatch mitigated by using Σ - Δ modulator rather than accumulator to perform dithering
 - Impact of DAC nonlinearity mitigated by using mismatch noise shaping techniques
 - Overall: reliably achieves 20 dB noise suppression
- "A Fractional-N frequency synthesizer architecture utilizing a mismatch compensated PFD/DAC structure...", Scott Meninger and M.H. Perrott, TCAS II, Nov 2003
 - Utilizes a mismatch compensated PFD/DAC structure
 - Simulations show that 40 dB noise suppression is achievable!

Key Element: A PFD/DAC Structure

Leverages application of selective delays of parallel PFD outputs to realize the D/A function

- No explicit D/A required
- Delay of one VCO cycle can be easily achieved using registers clocked by the VCO
- Illustrate the idea through animation

Apply Phase Shift to Two out of the Four PFD's

Net horizontal level shifts to halfway point

Apply Phase Shift to Three out of the Four PFD's

Net horizontal point shifts up

DAC function is self-aligned in gain to PFD output!

Actual PFD/DAC Implementation

- A current DAC is used, but is self-aligned to PFD output using the phase shifting method just discussed
- Nonlinearity of the DAC is removed using mismatch noise shaping techniques
- Note: approach overcomes mismatch limitations of prior art: Y. Dufour, "... Fractional Division Charge Compensation ...", US Patent 6,130,561

M.H. Perrott

Goal: GSM Level Noise Performance with 1 MHz Bandwidth!

CppSim simulations verify this is possible with only a 6-bit DAC!

- Left: <u>Calculated</u> Performance (PLL Design Assistant)
- Right: <u>Simulated</u> Performance (CppSim)

M.H. Perrott

Other Issues to Consider

- Additional nonidealities must be dealt with
 - Timing mismatch
 - Impact of shape of horizontal cancellation waveforms
 - Impact of both DAC element and timing mismatch sources on achievable spurious performance
- Note: detailed analytical examination of the above items is difficult
 - CppSim is an invaluable tool for exploring such issues

Take a look at the paper for more details: "A Fractional-N Frequency Synthesizer Architecture Utilizing a Mismatch Compensated PFD/DAC Structure ...", Scott Meninger, Michael Perrott, TCASII, Nov 2003