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Recall the CDR Model (Hogge Det.) From Lecture 21

 Similar to frequency synthesizer model except
- No divider
- Phase detector gain depends on the transition density 

of the input data
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Key Observation:  Must Use a Type II Implementation

 Integrator in H(s) forces the steady-state phase error to 
zero
- Important to achieve aligned clock and to minimize jitter
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Issue:  Type II System Harder to Design than Type I

 A stabilizing zero is required
 Undesired closed loop pole/zero doublet causes peaking 
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Delay Locked Loops

 Delay element used in place of a VCO
- No integration from voltage input to phase output
- System is Type 1
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System Design Is Easier Than For CDR
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Example Delay-Locked Loop Implementation

 Assume an input clock is provided that is perfectly 
matched in frequency to data sequence
- However, phase must be adjusted to compensate for 

propagation delays between clock and data on the PC board
 A variable delay element is used to lock phase to 

appropriate value
- Phase detector can be similar to that used in a CDR

 Hogge, Bang-Bang, or other structures possible 
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The Catch

 Delay needs to support an infinite range if system to be 
operated continuously
- Can otherwise end up at the end of range of delay element

 Won’t be able to accommodate temperature variations
 Methods have been developed to achieve infinite range 

delay elements
- Efficient implementation of such delay elements is often the 

key issue for high performance designs
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The Myth

 Delay locked loop designers always point to jitter 
accumulation problem of phase locked loops- Implication is that delay locked loops can achieve much lower 

jitter than clock and data recovery circuits
 The reality:  phase locked loops can actually achieve lower 

jitter than delay locked loops- PLL’s can clean up high frequency jitter of input clock- Whether a PLL or DLL is better depends on application (and 
achievable VCO performance)
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One Method of Achieving Infinite Delay
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 Phase shift of a sine wave can be implemented with 
I/Q modulation

 Note: infinite delay range allows DLL to be used to 
adjust frequency as well as phase
- Phase adjustment now must vary continuously
- Hard to get low jitter in practical implementations
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Conceptual Implementation of Infinite Delay Range

 Practical designs often implement cos() and sin() 
signals as phase shifted triangle waves
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Some References on CDR’s and Delay-Locked Loops

 Tom Lee et. al. were pioneers of the previous infinite 
range DLL approach
- See T. Lee et. al., “A 2.5 V CMOS Delay-Locked Loop for an 

18 Mbit, 500 Megabyte/s DRAM”, JSSC, Dec 1994
 Check out papers from Mark Horowitz’s group at Stanford
- Oversampling data recovery approach

 See C-K K. Yang et. al., “A 0.5-um CMOS 4.0-Gbit/s Serial 
Link Transceiver with Data Recovery using Oversampling”, 
JSSC, May 1998

- Multi-level signaling
 See Ramin Farjad-Rad et. al., “A 0.3-um CMOS 8-Gb/s 4-

PAM Serial Link Transceiver”, JSSC, May 2000
- Bi-directional signaling

 See E. Yeung, “A 2.4 Gb/s/pin simultaneous bidirectional 
parallel link …”, JSSC, Nov 2000
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High Speed Circuit Highlights
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Examine Techniques from a Few Recent Papers

 Circuit architectures utilizing circular topologies
- “A 40-Gb/s Clock and Data Recovery Circuit in 0.18-um 

CMOS Technology”, Jri Lee and Behzad Razavi, JSSC, 
Dec. 2003
- “Fully Integrated CMOS Power Amplifier Design Using 

the Distributed Active-Transformer Architecture”, Ichiro 
Aoki, ..., Ali Hajimiri, JSSC, March 2002
- “A Circular Standing Wave Oscillator”, W. Andress, 

Donhee Ham, ISSCC 2004
 Donhee will talk about this (and other things) in his guest 

lecture
 Low Noise, High Bandwidth Sigma-Delta Fractional-N 

Frequency Synthesizers
- “A Fractional-N Frequency Synthesizer Architecture 

Utilizing a Mismatch Compensated PFD/DAC Structure 
…”, Scott Meninger, Michael Perrott, TCASII, Nov 2003
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A 40 Gb/s CDR in 0.18u CMOS!  (Razavi et. al.)

 Achieves high speed operation using interleaving
- 4 parallel 10 Gb/s detectors are fed by an 8-phase VCO

 4 phases used for sampling registers
 4 phases used for bang-bang phase detection registers

 Key challenges
- Low jitter and low mismatch between clock phases

 We will look at this issue in detail here
- Achievement of 10 Gb/s sampling/bang-bang detection
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The Need for Low Mismatch Between Clock Phases

 8-phases generated by 4 VCO clock signals and their 
complements

 Desired spacing between clock signals is only 12.5 ps!
- Must meet setup and hold times of each 10 Gb/s sampler 

and phase detector register (limited by 0.18u technology)
- Mismatch and jitter on clock phases quickly eats into any 

margin left over after meeting setup/hold times
 Unacceptable bit error rates can easily result
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A Method to Generate Clock Phases

 Use transmission delay lines to generate each phase
 Advantage over using buffers as delay elements
- Wide bandwidth and lower noise
- Mismatch only a function of geometry variation

 Buffer mismatch a function of both geometry and device 
variation (i.e., doping variation, etc.)

 Issue:  transmission line is big
- Loss (and finite bandwidth) due to finite resistance of 

metal
- Long distance between clock phase outputs undesirable 
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Realize a Lumped Parameter Version of Trans. Line

 Approximate transmission line as an LC ladder network
- Allows a much more compact implementation
- Offers the same advantage of having mismatch depend 

only on geometry
 Issue:  now that mismatch has been dealt with, how do 

we achieve low jitter?
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Combine VCO and Phase Generator

 Can satisfy Barkhausen criterion by inverting output 
of line and feeding back to the input
- Looks a bit like a ring oscillator, but much better phase 

noise performance

CLK0

CLK180CLK45 CLK90 CLK135
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Sustain Oscillation by Including Negative Resistance

 Place negative resistance at each phase to keep 
amplitudes identical
- Must be careful to minimize impact on mismatch

 Issue:  how do you match feedback path from CLK180
to CLK0 with other phases?
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Use a Circular Geometry!

 Note use of differential inductors, etc.
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Other Nice Nuggets in the Razavi Paper

 Phase detection using 4 bang-bang detectors
- Clever combining of individual detectors to create an 

overall control voltage
- Note:  Bang-bang detection linearized by metastable 

behavior of registers
 Achievement of 10 Gb/s registers in 0.18u CMOS
- Leverages a large amplitude clock signal using a tuned 

VCO buffer
- Uses SCL registers with resistor loads – bottom current 

sources eliminated to leverage large amplitude clock
 Fast XOR gate and amplifier structures

Take a look at the paper for more details:
“A 40-Gb/s Clock and Data Recovery Circuit in 0.18-um 

CMOS Technology”, Jri Lee and Behzad Razavi, JSSC, Dec. 2003
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A 2 Watt, 2.4 GHz CMOS Power Amplifier (Hajimiri et. al.)

 Key issue facing CMOS power amps:
- Breakdown voltage is too low for transistors with 

sufficient speed
- Example

 0.35u CMOS limited to about a 3V supply
 To keep in M1 in saturation, assume we need Vout > 0.5 V
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VDD
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Key Idea:  Use a Transformer!

 To achieve 1 Watt at the output, we need:

 We know that:

 Therefore, setting n = 4 is adequate:
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A Practical Issue for High Frequency Transformers

 High frequency transformers are formed by coupled 
inductors
- Will typically have a net inductive impedance at the 

operating frequency (assuming self-resonant frequency 
is well above operating frequency)
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The Issue of Bondwires

 The presence of bondwires will alter the impedance 
seen by the transistor
- Would prefer to desensitize the circuit to the bondwire 

inductances
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The Fix

 A differential topology places the bondwire nodes at 
incremental ground
- Bondwire inductance now has little impact
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How Do We Implement the Transformer?

 Classical options
- Spiral 1:n transformer

 Problem:  very lossy
- Resonant L-match or -match transformer

 Problem:  still too lossy (though better than a spiral 
transformer)

A novel approach by Aoki & Hajimiri: 
Create a distributed, active transformer

C1
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VDD
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A 1:4 Transformer Achieved Using Four 1:1 Sections

 1:1 transformers can be implemented much more 
efficiently than their 1:4 counterparts
- Winding ratio is one-to-one, and integrated processes 

allow very close proximity between the two windings
 Cascading of the secondary windings leads to their 

output voltages being summed
- Net effect is a 1:4 transformer!
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Implementation of 1:1 Transformer Sections

 High efficiency using slab (i.e. straight wire) inductors
- Avoids inefficiency of current crowding at corners of windings
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Problem:  Long Wires Required for Diff. Pair Elements

 The use of slab inductors would seem to imply that an 
equally long return path for the current is required
- Implies that long wires are required for connection to 

capacitor and differential pair transistors
 Issue:  loss and undesired inductance
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A Clever Fix:  Redefine The Differential Pairs

 Observation:  neighbors of adjoining transformer 
sections have opposite signaling on their transistor gates
- Can define differential pairs to be between the sections 

rather than within each section
- Short wires can now be achieved for capacitor and 

transistors
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Issue:  what do you do about the ends?
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Use a Circular Topology!

 Removes the end effects!
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Other Issues to Consider

 Efficient achievement of 50 Ohm matching at the input 
of the amplifier

 Efficiency calculations
 Input power distribution
 Harmonic suppression

Take a look at the paper for more details:
“Fully Integrated CMOS Power Amplifier Design Using the 

Distributed Active-Transformer Architecture”, Ichiro Aoki, Scott 
Kee, David Rutledge, Ali Hajimiri, JSSC, March 2002
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Wide Bandwidth, Low Noise Fractional-N Synthesizers

 Fractional-N frequency synthesis

- Achieves very high frequency resolution
- There is a noise/bandwidth tradeoff
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The Issue of Quantization Noise

 Divide value dithering introduces noise
 Sigma-Delta modulation shapes noise to high 

frequencies
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Impact of  Quantization Noise on Synth. Output
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 Lowpass action of PLL dynamics suppresses the 
shaped - quantization noise
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Impact of Increasing the PLL Bandwidth

 Higher PLL bandwidth leads to less quantization noise 
suppression
- There is a direct trade-off between PLL bandwidth and jitter
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Method 1 of Reducing Quantization Noise

 Lower quantization step size by switching between 
multiple phases of the VCO output
- Generate phases by using a ring oscillator or delay 

locked loop
 Issue:  noise induced by mismatch between phases
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Method 2 of Reducing Quantization Noise

 Use classical fractional-N approach of “phase 
interpolation” to cancel out quantization noise
- Use a D/A converter matched to PFD/Charge Pump output

 Issue:  limited by mismatch between gain of D/A and 
PFD/Charge Pump output and nonlinearity in D/A
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Horizontal Slicing with B = 2
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Comparison of Approaches

 Phase shifting
- “Vertical” approach

 Phase interpolation
- “Horizontal” approach
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Which Is Best?

 Phase shifting
- Limited by number of phases that can be generated and 

their mismatch
- Ring oscillators have poor phase noise

 Phase interpolation
- Limited by ability to match DAC output to that of the 

PFD/Charge pump
- High spurious noise can result due to DAC nonlinearity 

 Key observation
- Phase interpolation allows us to take advantage of 

advances in DAC design over the last 20 years
 We can now largely overcome the above limitations!
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Two Recent Approaches to the Cancellation Method

 “A Wideband 2.4-GHz Delta-Sigma Fractional-N PLL With 
1-Mb/s In-Loop Modulation”, Sudhakar Pamarti and Ian 
Galton, JSSC, Nov 2004
- Impact of DAC mismatch mitigated by using - modulator 

rather than accumulator to perform dithering
- Impact of DAC nonlinearity mitigated by using mismatch 

noise shaping techniques
- Overall:  reliably achieves 20 dB noise suppression

 “A Fractional-N frequency synthesizer architecture 
utilizing a mismatch compensated PFD/DAC 
structure…”, Scott Meninger and M.H. Perrott, TCAS II, 
Nov 2003
- Utilizes a mismatch compensated PFD/DAC structure
- Simulations show that 40 dB noise suppression is 

achievable!
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Key Element:  A PFD/DAC Structure

 Leverages application of selective delays of parallel 
PFD outputs to realize the D/A function- No explicit D/A required- Delay of one VCO cycle can be easily achieved using 

registers clocked by the VCO
 Illustrate the idea through animation
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PFD
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Apply Phase Shift to Two out of the Four PFD’s

 Net horizontal level shifts to halfway point

PFD

PFD

PFD

PFD

Tvco

Tvco
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 Net horizontal point shifts up

PFD

PFD

PFD

PFD

Tvco

Tvco

Apply Phase Shift to Three out of the Four PFD’s

DAC function is self-aligned in gain to PFD output!
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 A current DAC is used, but is self-aligned to PFD output 
using the phase shifting method just discussed

 Nonlinearity of the DAC is removed using mismatch 
noise shaping techniques 

 Note:  approach overcomes mismatch limitations of 
prior art:  Y. Dufour, “… Fractional Division Charge 
Compensation …”, US Patent 6,130,561
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Goal:  GSM Level Noise Performance with 1 MHz Bandwidth!

- Left: Calculated Performance (PLL Design Assistant)
- Right: Simulated Performance (CppSim)
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 CppSim simulations verify this is possible with only a 
6-bit DAC!
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Other Issues to Consider

 Additional nonidealities must be dealt with
- Timing mismatch
- Impact of shape of horizontal cancellation waveforms
- Impact of both DAC element and timing mismatch 

sources on achievable spurious performance
 Note:  detailed analytical examination of the above 

items is difficult
- CppSim is an invaluable tool for exploring such issues

Take a look at the paper for more details:
“A Fractional-N Frequency Synthesizer Architecture Utilizing a 

Mismatch Compensated PFD/DAC Structure …”, Scott Meninger, 
Michael Perrott, TCASII, Nov 2003
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