High Speed Communication Circuits and Systems Lecture 9 Low Noise Amplifiers

Michael H. Perrott March 3, 2004

Copyright © 2004 by Michael H. Perrott All rights reserved.

Narrowband LNA Design for Wireless Systems

Design Issues

- Noise Figure impacts receiver sensitivity
- Linearity (IIP3) impacts receiver blocking performance
- Gain high gain reduces impact of noise from components that follow the LNA (such as the mixer)
- Power match want Z_{in} = Z_o (usually = 50 Ohms)
- Power want low power dissipation
- Bandwidth need to pass the entire RF band for the intended radio application (i.e., all of the relevant channels)
- Sensitivity to process/temp variations need to make it manufacturable in high volume

Our Focus in This Lecture

- Designing for low Noise Figure
- Achieving a good power match
- Hints at getting good IIP3
- Impact of power dissipation on design
- Tradeoff in gain versus bandwidth

Our Focus: Inductor Degenerated Amp

Same as amp in Lecture 7 except for inductor degeneration

Note that noise analysis in Tom Lee's book does not include inductor degeneration (i.e., Table 11.1)

Recall Small Signal Model for Noise Calculations

Key Assumption: Design for Power Match

Input impedance (from Lec 6)

$$Z_{in}(s) = \frac{1}{sC_{gs}} + s(L_{deg} + L_g) + \frac{g_m}{C_{gs}}L_{deg}$$
Real!

Set to achieve pure resistance = R_s at frequency w_o

$$\Rightarrow \quad \frac{1}{\sqrt{(L_g + L_{deg})C_{gs}}} = w_o, \quad \frac{g_m}{C_{gs}}L_{deg} = R_s$$

Process and Topology Parameters for Noise Calculation

- Process parameters
 - **For 0.18**μ CMOS, we will assume the following

$$c = -j0.55, \quad \gamma = 3, \quad \delta = 2\gamma = 6, \quad \frac{g_m}{g_{do}} = \frac{1}{2} \Rightarrow \chi_d = 0.32$$

Circuit topology parameters Z_g and Z_{deg}

$$Z_g = R_s + jwL_g, \ Z_{deg} = jwL_{deg}$$

Calculation of Z_{gs}

Calculation of η

Calculation of Z_{gsw}

By definition

$$\begin{aligned} & \text{By definition} \\ & Z_{gsw} = w_o C_{gs} Z_{gs} \quad \left(Q = \frac{1}{w_o C_{gs} 2R_s} = \frac{w_o (L_g + L_{deg})}{2R_s}\right) \\ & \text{Calculation} \\ & Z_{gsw} = w_o C_{gs} \frac{jw_o (L_{deg} + L_g) + R_s}{jw_o (g_m L_{deg} + R_s C_{gs})} \\ & = \frac{jw_o^2 C_{gs} (L_{deg} + L_g) + w_o C_{gs} R_s}{jw_o (g_m L_{deg} + R_s C_{gs})} \\ & = \frac{j1 + 1/(2Q)}{jw_o (g_m L_{deg} + R_s C_{gs})} \\ & = \frac{j1 + 1/(2Q)}{jw_o C_{gs} ((g_m / C_{gs}) L_{deg} + R_s)} \\ & = \frac{j1 + 1/(2Q)}{jw_o C_{gs} (R_s + R_s)} = \frac{j1 + 1/(2Q)}{j1/Q} = \boxed{\frac{1}{2}(2Q - j)} \end{aligned}$$

Calculation of Output Current Noise

Step 3: Plug in values to noise expression for indg

$$\overline{\frac{i_{ndg}^2}{\Delta f}} = \frac{\overline{i_{nd}^2}}{\Delta f} \left(|\eta|^2 + 2Re \left\{ -j|c|\chi_d \eta^* Z_{gsw} \right\} + \chi_d^2 |Z_{gsw}|^2 \right)$$

where $\eta = \frac{1}{2}$, $Z_{gsw} = \frac{1}{2}(2Q - j)$

$$\Rightarrow \quad \frac{i_{ndg}^2}{\Delta f} = \frac{\overline{i_{nd}^2}}{\Delta f} \left(\frac{1}{4} + 2Re\left\{-j|c|\chi_d \frac{1}{4}(2Q-j)\right\} + \chi_d^2 \frac{1}{4}|2Q-j|^2\right)$$

$$=\frac{\overline{i_{nd}^2}}{\Delta f}\frac{1}{4}\left(1-2|c|\chi_d+\chi_d^2(4Q^2+1)\right)$$

Compare Noise With and Without Inductor Degeneration

From Lecture 7, we derived for $L_{deg} = 0$, $w_o^2 = 1/(L_g C_{gs})$

$$\frac{i_{ndg}^2}{\Delta f} = \frac{i_{nd}^2}{\Delta f} \left(1 - 2|c|\chi_d + \chi_d^2(Q^2 + 1) \right)$$

• We now have for $(g_m/C_{gs})L_{deg} = R_s$, $w_o^2 = 1/((L_g + L_{deg})C_{gs})$

$$\frac{i_{ndg}^2}{\Delta f} = \frac{\overline{i_{nd}^2}}{\Delta f} \frac{1}{4} \left(1 - 2|c|\chi_d + \chi_d^2 (4Q^2 + 1) \right)$$

Derive Noise Factor for Inductor Degenerated Amp

Recall the alternate expression for Noise Factor derived in Lecture 8

 $F = \frac{\text{total output noise power}}{\text{output noise due to input source}}$

- $=\frac{\overline{i_{nout(tot)}^2}}{\overline{i_{nout(in)}^2}}$
- We now know the output noise due to the transistor noise
 - We need to determine the output noise due to the source resistance

Output Noise Due to Source Resistance

Noise Factor for Inductor Degenerated Amplifier

Noise Factor
$$= \frac{(g_m Q)^2 \overline{e_{ns}^2} + \overline{i_{ndg}^2} / \Delta f}{(g_m Q)^2 \overline{e_{ns}^2}} = 1 + \frac{\overline{i_{ndg}^2} / \Delta f}{(g_m Q)^2 \overline{e_{ns}^2}}$$
$$= 1 + \frac{4kT\gamma g_{do}(1/4)(1-2|c|\chi_d + \chi_d^2(4Q^2+1))}{(g_m Q)^2 4kTR_s}$$
$$= 1 + \left(\frac{1}{g_m QR_s}\right) \gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{4Q} \left(1-2|c|\chi_d + (4Q^2+1)\chi_d^2\right)$$
$$= 1 + \left(\frac{2w_o R_s C_{gs}}{g_m R_s}\right) \gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{4Q} \left(1-2|c|\chi_d + (4Q^2+1)\chi_d^2\right)$$
$$= 1 + \left(\frac{w_o}{w_t}\right) \gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{2Q} \left(1-2|c|\chi_d + (4Q^2+1)\chi_d^2\right)$$
Noise Factor scaling coefficient

Noise Factor Scaling Coefficient Versus Q

Achievable Noise Figure in 0.18µ with Power Match

- Suppose we desire to build a narrowband LNA with center frequency of 1.8 GHz in 0.18µ CMOS (c=-j0.55)
 - **From Hspice** at V_{gs} = 1 V with NMOS (W=1.8 μ , L=0.18 μ)

• measured $g_m = 871 \ \mu\text{S}$, $C_{gs} = 2.9 \ \text{fF}$

$$\Rightarrow w_t \approx \frac{g_m}{C_{gs}} = \frac{871 \times 10^{-6}}{2.9 \times 10^{-15}} = 2\pi (47.8GHz)$$
$$\Rightarrow \frac{w_o}{w_t} = \frac{2\pi 1.8e9}{2\pi 47.8e9} \approx \frac{1}{26.6}$$

- Looking at previous curve, with Q \approx 2 we achieve a Noise Factor scaling coefficient \approx 3.5

$$\Rightarrow$$
 Noise Factor $\approx 1 + \frac{1}{26.6} 3.5 \approx 1.13$

 \Rightarrow Noise Figure = $10 \log(1.13) \approx 0.53 dB$

Component Values for Minimum NF with Power Match

- Assume R_s = 50 Ohms, Q = 2, f_o = 1.8 GHz, f_t = 47.8 GHz
 - C_{gs} calculated as $Q = \frac{1}{2R_s w_o C_{gs}}$ $\Rightarrow C_{gs} = \frac{1}{2R_s w_o Q} = \frac{1}{2(50)2\pi 1.8e9(2)} = 442 fF$

L_{deg} calculated as

$$\frac{g_m}{C_{gs}} L_{deg} = R_s \;\; \Rightarrow \;\; L_{deg} = \frac{R_s}{w_t} = \frac{50}{2\pi 47.8e9} = 0.17nH$$

L_g calculated as

$$\frac{1}{\sqrt{(L_g + L_{deg})C_{gs}}} = w_o \Rightarrow L_g = \frac{1}{w_o^2 C_{gs}} - L_{deg}$$
$$\Rightarrow L_g = \frac{1}{(2\pi 1.8e9)^2 442e - 15} - 0.17e - 9 = 17.5nH$$

Have We Chosen the Correct Bias Point? $(V_{qs} = 1V)$

Note: IIP3 is also a function of Q

Calculation of Bias Current for Example Design

Calculate current density from previous plot

$$V_{gs} = 1V \Rightarrow I_{dens} \approx 175 \mu A / \mu m$$

Calculate W from Hspice simulation (assume L=0.18 μm)

$$C_{gs} = 2.9 fF$$
 for $W = 1.8 \mu m \Rightarrow W = \frac{442 fF}{2.9 fF} 1.8 \mu m \approx 274 \mu m$

- Could also compute this based on C_{ox} value
- Calculate bias current

$$I_{bias} = I_{den}W = (175\mu A/\mu m)(274\mu m) \approx 48mA$$

Problem: this is not low power!!

We Have Two "Handles" to Lower Power Dissipation

• Key formulas $I_{bias} = I_{den}W$

$$F = 1 + \left(\frac{w_o}{w_t}\right) \gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{2Q} \left(1 - 2|c|\chi_d + (4Q^2 + 1)\chi_d^2\right)$$

- Lower current density, I_{den}
 - Benefits

$$\Rightarrow$$
 lower power, lower $\frac{g_{do}}{g_m}$ ratio

Negatives

 \Rightarrow lower IIP3, lower f_t

- Lower W
 - Benefit: lower power
 - Negatives

$$\Rightarrow \text{ lower } C_{gs} = \frac{2}{3} WLC_{ox} \Rightarrow \text{ higher } Q = \frac{1}{w_o C_{gs} 2R_s}$$

 \Rightarrow higher F (and higher inductor values)

First Step in Redesign – Lower Current Density, I_{den}

Need to verify that IIP3 still OK (once we know Q)

Recalculate Process Parameters

- Assume that the only thing that changes is g_m/g_{do} and f_t
 - **From previous graph (I**_{den} = 100 μ A/ μ m)

$$\frac{g_m}{g_{do}} \approx \frac{.78}{1.15} \approx 0.68 \Rightarrow \chi_d = \frac{g_m}{g_{do}} \sqrt{\frac{\delta}{5\gamma}} = 0.63 \sqrt{\frac{2}{5}} \approx 0.43$$
$$w_t \approx \frac{g_m}{C_{gs}} \approx \frac{0.78mS}{2.9fF} = (2\pi)42.8GHz$$

- We now need to replot the Noise Factor scaling coefficient
 - Also plot over a wider range of Q

$$F = 1 + \left(\frac{w_o}{w_t}\right) \gamma \left(\frac{g_{do}}{g_m}\right) \frac{1}{2Q} \left(1 - 2|c|\chi_d + (4Q^2 + 1)\chi_d^2\right)$$

Noise Factor scaling coefficient

Update Plot of Noise Factor Scaling Coefficient

Second Step in Redesign – Lower W

Recall
$$C_{gs} = \frac{2}{3}WLC_{ox}, \quad Q = \frac{1}{w_o C_{gs} 2R_s}$$

 $I_{bias} \text{ can be related to Q as}$ $I_{bias} = I_{den}W = I_{den}\frac{3}{2LC_{ox}}C_{gs} = I_{den}\frac{3}{2LC_{ox}}\frac{1}{w_o 2R_s Q}$ $\Rightarrow I_{bias} \propto \frac{1}{Q}$

- We previously chose Q = 2, let's now choose Q = 6
 - Cuts power dissipation by a factor of 3!
 - New value of W is one third the old one

$$\Rightarrow W = \frac{274fF}{3} \approx 91\mu m$$

Power Dissipation and Noise Figure of New Design

Power dissipation

$$I_{bias} = I_{den}W = (100\mu A/\mu m)(91\mu m) = 9.1mA$$

At 1.8 V supply

$$\Rightarrow \text{Power} = (9.1mA)(1.8V) = 16.4mW$$

Noise Figure

f_t previously calculated, get scaling coeff. from plot

$$\frac{w_o}{w_t} = \frac{2\pi 1.8e9}{2\pi 42.8e9} \approx \frac{1}{23.8}, \text{ scaling coeff.} \approx 10$$

$$\Rightarrow \text{ Noise Factor} \approx 1 + \frac{1}{23.8} 10 \approx 1.42$$

$$\Rightarrow \text{ Noise Figure} = 10 \log(1.42) \approx 1.52 \ dB$$

Updated Component Values

- Assume R_s = 50 Ohms, Q = 6, f_o = 1.8 GHz, f_t = 42.8 GHz
 - C_{gs} calculated as $Q = \frac{1}{2R_s w_o C_{gs}}$ $\Rightarrow C_{gs} = \frac{1}{2R_s w_o Q} = \frac{1}{2(50)2\pi 1.8e9(6)} \approx 147 fF$

L_{deg} calculated as

$$\frac{g_m}{C_{gs}} L_{deg} = R_s \;\; \Rightarrow \;\; L_{deg} = \frac{R_s}{w_t} = \frac{50}{2\pi 42.8e9} = 0.19nH$$

L_g calculated as

$$\frac{1}{\sqrt{(L_g + L_{deg})C_{gs}}} = w_o \Rightarrow L_g = \frac{1}{w_o^2 C_{gs}} - L_{deg}$$
$$\Rightarrow L_g = \frac{1}{(2\pi 1.8e^9)^2 147e - 15} - 0.19e - 9 = 53nH$$

Inclusion of Load (Resonant Tank)

Calculation of Gain

$|Gain| = g_m R_L Q$

- Parameters g_m and Q were set by Noise Figure and IIP3 considerations
 - Note that Q is of the input matching network, not the amplifier load

R_L is the free parameter – use it to set the desired gain

- Note that higher R_L for a given resonant frequency and capacitive load will increase Q_L (i.e., Q of the amplifier load)
 - There is a tradeoff between amplifier bandwidth and gain
- Generally set R_L according to overall receiver noise and IIP3 requirements (higher gain is better for noise)
 - Very large gain (i.e., high Q_L) is generally avoided to minimize sensitivity to process/temp variations that will shift the center frequency

The Issue of Package Parasitics

Bondwire (and package) inductance causes two issues

- Value of degeneration inductor is altered
- Noise from other circuits couples into LNA

Differential LNA

Advantages

- Value of L_{deg} is now much better controlled
- Much less sensitivity to noise from other circuits
- Disadvantages
 - Twice the power as the single-ended version
 - Requires differential input at the chip

Note: Be Generous with Substrate Contact Placement

- Having an abundance of nearby substrate contacts helps in three ways
 - Reduces possibility of latch up issues
 - Lowers R_{sub} and its associated noise
 - Impacts LNA through backgate effect (g_{mb})
 - Absorbs stray electrons from other circuits that will otherwise inject noise into the LNA
- Negative: takes up a bit extra area

Another CMOS LNA Topology

- Consider increasing g_m for a given current by using both PMOS and NMOS devices
 - Key idea: re-use of current

- Issues
 - PMOS device has poorer transconductance than NMOS for a given amount of current, and f_t is lower
 - Not completely clear there is an advantage to using this technique, but published results are good
 - See A. Karanicolas, "A 2.7 V 900-MHz CMOS LNA and Mixer", JSSC, Dec 1996

Biasing for LNA Employing Current Re-Use

- PMOS is biased using a current mirror
- NMOS current adjusted to match the PMOS current
- Note: not clear how the matching network is achieving a 50 Ohm match
 - Perhaps parasitic bondwire inductance is degenerating the PMOS or NMOS transistors?

Another Recent Approach

Feedback from output to base of transistor provides another degree of freedom

- For details, check out:
 - Rossi, P. et. Al., "A 2.5 dB NF Direct-Conversion Receiver Front-End for HiperLan2/IEEE802.11a", ISSCC 2004, pp. 102-103

Broadband LNA Design

- Most broadband systems are not as stringent on their noise requirements as wireless counterparts
- Equivalent input voltage is often specified rather than a Noise Figure
- Typically use a resistor to achieve a broadband match to input source
 - We know from Lecture 8 that this will limit the noise figure to be higher than 3 dB
- For those cases where low Noise Figure is important, are there alternative ways to achieve a broadband match?

Recall Noise Factor Calculation for Resistor Load

$$\overline{v_{nout(tot)}^2} = \left(\frac{R_L}{R_s + R_L}\right)^2 \overline{e_{nRs}^2} + \left(\frac{R_s}{R_s + R_L}\right)^2 \overline{e_{nRL}^2}$$

Total output noise due to source

$$\overline{v_{nout(in)}^2} = \left(\frac{R_L}{R_s + R_L}\right)^2 \overline{e_{nRs}^2}$$

Noise Factor

$$F = 1 + \left(\frac{R_s}{R_L}\right)^2 \frac{\overline{e_{nRL}^2}}{\overline{e_{nRs}^2}} = 1 + \left(\frac{R_s}{R_L}\right)^2 \frac{4kTR_L}{4kTR_s} = 1 + \frac{R_s}{R_L}$$

Noise Figure For Amp with Resistor in Feedback

Total output noise (assume A is large)

$$\overline{v_{nout(tot)}^2} \approx \left(\frac{-R_f}{R_s}\right)^2 \overline{e_{nRs}^2} + \overline{e_{nRf}^2}$$

Total output noise due to source (assume A is large)

$$\overline{v_{nout(in)}^2} \approx \left(\frac{-R_f}{R_s}\right)^2 \overline{e_{nRs}^2}$$

Noise Factor

$$F \approx 1 + \left(\frac{R_s}{R_f}\right)^2 \frac{\overline{e_{nRf}^2}}{\overline{e_{nRs}^2}} = 1 + \left(\frac{R_s}{R_f}\right)^2 \frac{4kTR_f}{4kTR_s} = 1 + \frac{R_s}{R_f}$$

Input Impedance For Amp with Resistor in Feedback

Recall from Miller effect discussion that

$$Z_{in} = \frac{Z_f}{1 - gain} = \frac{R_f}{1 + A}$$

If we choose Z_{in} to match R_s, then

$$R_f = (1+A)Z_{in} = (1+A)R_s$$

• Therefore, Noise Figure lowered by being able to choose a large value for R_f since $F \approx 1 + \frac{R_s}{R_f}$

Example – Series-Shunt Amplifier

- Recall that the above amplifier was analyzed in Lecture 5
- Tom Lee points out that this amplifier topology is actually used in noise figure measurement systems such as the Hewlett-Packard 8970A
 - It is likely to be a much higher performance transistor than a CMOS device, though

Recent Broadband LNA Approaches

- Can create broadband matching networks using LC-ladder filter design techniques ____
 - **CMOS example:** M_2 V_{bias2} M_2 Vout R_s 2000 M₁ C_p I_{bias} C_2 V_{in}, V_{bias} -deq
- See Bevilacqua et. al, "An Ultra-Wideband CMOS LNA for 3.1 to 10.6 GHz Wireless Receivers", ISSC 2004, pp. 382-383
 M.H. Perrott

Recent Broadband LNA Approaches (Continued)

See Ismail et. al., "A 3 to 10 GHz LNA Using a Wideband LC-ladder Matching Network", ISSCC 2004, pp. 384-385