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Narrowband LNA Design for Wireless Systems

 Design Issues
- Noise Figure – impacts receiver sensitivity
- Linearity (IIP3) – impacts receiver blocking performance
- Gain – high gain reduces impact of noise from components 

that follow the LNA (such as the mixer)
- Power match – want Zin = Zo (usually = 50 Ohms) 
- Power – want low power dissipation
- Bandwidth – need to pass the entire RF band for the 

intended radio application (i.e., all of the relevant channels)
- Sensitivity to process/temp variations – need to make it 

manufacturable in high volume

Zin

Zo LNA
To Mixer

From Antenna
and Bandpass

Filter

PC board
trace

Package
Interface

2



M.H. PerrottM.H. Perrott

Our Focus in This Lecture

 Designing for low Noise Figure
 Achieving a good power match
 Hints at getting good IIP3
 Impact of power dissipation on design
 Tradeoff in gain versus bandwidth
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Our Focus: Inductor Degenerated Amp

 Same as amp in Lecture 7 except for inductor degeneration
- Note that noise analysis in Tom Lee’s book does not include 

inductor degeneration (i.e., Table 11.1)
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Recall Small Signal Model for Noise Calculations
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 Input impedance (from Lec 6)

 Set to achieve pure resistance = Rs at frequency wo

Key Assumption:  Design for Power Match
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Process and Topology Parameters for Noise Calculation

 Process parameters
- For 0.18 CMOS, we will assume the following

 Circuit topology parameters Zg and Zdeg
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Calculation of Zgs
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Calculation of 
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Calculation of Zgsw

 By definition

 Calculation
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Calculation of Output Current Noise

 Step 3:  Plug in values to noise expression for indg
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 From Lecture 7, we derived for Ldeg = 0,  wo
2 = 1/(LgCgs)

 We now have for (gm/Cgs)Ldeg = Rs,  wo
2 = 1/((Lg + Ldeg)Cgs)

Compare Noise With and Without Inductor Degeneration
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 Recall the alternate expression for Noise Factor derived in 
Lecture 8

 We now know the output noise due to the transistor noise
- We need to determine the output noise due to the source 

resistance

Derive Noise Factor for Inductor Degenerated Amp
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Output Noise Due to Source Resistance
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Noise Factor for Inductor Degenerated Amplifier

Noise Factor scaling coefficient
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Noise Factor Scaling Coefficient Versus Q
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Achievable Noise Figure in 0.18 with Power Match

 Suppose we desire to build a narrowband LNA with 
center frequency of 1.8 GHz in 0.18 CMOS (c=-j0.55)
- From Hspice – at Vgs = 1 V with NMOS (W=1.8, L=0.18)

 measured gm =871 S, Cgs = 2.9 fF

- Looking at previous curve, with Q ≈ 2 we achieve a Noise 
Factor scaling coefficient ≈ 3.5
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Component Values for Minimum NF with Power Match

 Assume Rs = 50 Ohms, Q = 2, fo = 1.8 GHz, ft = 47.8 GHz
- Cgs calculated as

- Ldeg calculated as

- Lg calculated as
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Have We Chosen the Correct Bias Point?  (Vgs = 1V)
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Calculation of Bias Current for Example Design

 Calculate current density from previous plot

 Calculate W from Hspice simulation (assume L=0.18 m)

- Could also compute this based on Cox value
 Calculate bias current

- Problem:  this is not low power!!
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We Have Two “Handles” to Lower Power Dissipation

 Key formulas

 Lower current density, Iden- Benefits

- Negatives

 Lower W
- Benefit:  lower power
- Negatives
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First Step in Redesign – Lower Current Density, Iden
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Recalculate Process Parameters

 Assume that the only thing that changes is gm/gdo and ft- From previous graph (Iden = 100  A/ m)

 We now need to replot the Noise Factor scaling 
coefficient
- Also plot over a wider range of Q

Noise Factor scaling coefficient
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Update Plot of Noise Factor Scaling Coefficient
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Second Step in Redesign – Lower W

 Recall

 Ibias can be related to Q as

 We previously chose Q = 2, let’s now choose Q = 6
- Cuts power dissipation by a factor of 3!
- New value of W is one third the old one
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Power Dissipation and Noise Figure of New Design

 Power dissipation

- At 1.8 V supply

 Noise Figure
- ft previously calculated, get scaling coeff. from plot
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Updated Component Values

 Assume Rs = 50 Ohms, Q = 6, fo = 1.8 GHz, ft = 42.8 GHz
- Cgs calculated as

- Ldeg calculated as

- Lg calculated as
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Inclusion of Load (Resonant Tank)

 Add output load to achieve voltage gain
- Note: in practice, use cascode device

 We’re ignoring Cgd in this analysis
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Calculation of Gain

 Assume Zin = Rs

 Assume load tank resonates 
at frequency wo
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Setting of Gain

 Parameters gm and Q were set by Noise Figure and IIP3 
considerations
- Note that Q is of the input matching network, not the 

amplifier load
 RL is the free parameter – use it to set the desired gain
- Note that higher RL for a given resonant frequency and 

capacitive load will increase QL (i.e., Q of the amplifier 
load)
 There is a tradeoff between amplifier bandwidth and gain

- Generally set RL according to overall receiver noise and 
IIP3 requirements (higher gain is better for noise)
 Very large gain (i.e.,  high QL) is generally avoided to 

minimize sensitivity to process/temp variations that will shift 
the center frequency 
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The Issue of Package Parasitics

 Bondwire (and package) inductance causes two issues
- Value of degeneration inductor is altered
- Noise from other circuits couples into LNA
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Differential LNA

 Advantages
- Value of Ldeg is now much better controlled
- Much less sensitivity to noise from other circuits

 Disadvantages
- Twice the power as the single-ended version
- Requires differential input at the chip
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Note:  Be Generous with Substrate Contact Placement

 Having an abundance of nearby substrate contacts 
helps in three ways- Reduces possibility of latch up issues- Lowers Rsub and its associated noise

 Impacts LNA through backgate effect (gmb)- Absorbs stray electrons from other circuits that will 
otherwise inject noise into the LNA

 Negative:  takes up a bit extra area
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Another CMOS LNA Topology

 Consider increasing gm for a given current by using 
both PMOS and NMOS devices- Key idea:  re-use of current

 Issues- PMOS device has poorer transconductance than NMOS 
for a given amount of current, and ft is lower- Not completely clear there is an advantage to using this 
technique, but published results are good
 See A. Karanicolas, “A 2.7 V 900-MHz CMOS LNA and 

Mixer”, JSSC, Dec 1996
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Biasing for LNA Employing Current Re-Use

 PMOS is biased using a current mirror
 NMOS current adjusted to match the PMOS current
 Note:  not clear how the matching network is achieving 

a 50 Ohm match
- Perhaps parasitic bondwire inductance is degenerating 

the PMOS or NMOS transistors?
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Another Recent Approach

 Feedback from output to base of transistor provides 
another degree of freedom

 For details, check out:
- Rossi, P. et. Al., “A 2.5 dB NF Direct-Conversion 

Receiver Front-End for HiperLan2/IEEE802.11a”, ISSCC 
2004, pp. 102-103
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Broadband LNA Design

 Most broadband systems are not as stringent on their 
noise requirements as wireless counterparts

 Equivalent input voltage is often specified rather than a 
Noise Figure

 Typically use a resistor to achieve a broadband match 
to input source- We know from Lecture 8 that this will limit the noise figure 

to be higher than 3 dB
 For those cases where low Noise Figure is important, 

are there alternative ways to achieve a broadband 
match?
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Recall Noise Factor Calculation for Resistor Load

 Total output noise

 Total output noise due to source

 Noise Factor
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Noise Figure For Amp with Resistor in Feedback                 

 Total output noise (assume A is large)

 Total output noise due to source (assume A is large)

 Noise Factor
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Input Impedance For Amp with Resistor in Feedback           

 Recall from Miller effect discussion that

 If we choose Zin to match Rs, then

 Therefore, Noise Figure lowered by being able to 
choose a large value for Rf since
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Example – Series-Shunt Amplifier

 Recall that the above amplifier was analyzed in 
Lecture 5

 Tom Lee points out that this amplifier topology is 
actually used in noise figure measurement systems 
such as the Hewlett-Packard 8970A
- It is likely to be a much higher performance transistor 

than a CMOS device, though
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Recent Broadband LNA Approaches

 Can create broadband matching networks using     
LC-ladder filter design techniques

 CMOS example:

 See Bevilacqua et. al, “An Ultra-Wideband CMOS LNA 
for 3.1 to 10.6 GHz Wireless Receivers”, ISSC 2004, 
pp. 382-383  
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Recent Broadband LNA Approaches (Continued)

 Bipolar example:

 See Ismail et. al., “A 3 to 10 GHz LNA Using a 
Wideband LC-ladder Matching Network”, ISSCC 2004, 
pp. 384-385
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