
Fast and Accurate Behavioral Simulation of Time-
Based Circuits using C++ and Standard Verilog

Dallas IEEE CAS Workshop 2010

Michael Perrott
October 2010

Copyright © 2010 by Michael H. Perrott
All rights reserved.

2

A Modern “Analog” Custom IC

 A 2.5 Gb/s CDR for high
speed links
- Analog

amplification and
phase sensing

- Digital
filtering and calibration

- RF
clocking (2.5 GHz)

 How do we design such
chips?
- Standard

methodologies do not
provide a cohesive
system approach

IC Design is Getting More Complex

MEMS
RF

Digital

Precision

Analog

3

 A Programmable
MEMS Oscillator
- Analog

Temperature sensor,
ADC, oscillator
sustaining circuit

- Digital
signal processing

- RF
clocking (800 MHz)

- MEMS
high Q resonator

 System level design is
critical

4

Circuit Architectures are Changing

 Traditional analog circuits utilize voltage and current

- Modern CMOS processes have issues with voltage
headroom, intrinsic gain (gmro), and leakage

 Time-based circuits utilize the timing of edges produced
by “digital” circuits

- Modern CMOS processes are offering faster edge rates
and lower delay through digital circuits

How do we design such circuits within
an overall system context?

5

Focus: System Level Design of Time-Based Circuits

 We will begin by taking a closer look at time-based
circuits
- Background and some recent examples
- Techniques for fast and accurate behavioral simulation

 We will then consider the issue of system level
simulation
- Where it fits within an overall IC design methodology
- C++ versus Verilog as a system level simulator
- Combined C++/Verilog simulation using

CppSim/VppSim
 We will conclude with a short case study of a MEMS-

based oscillator

6

Phase-Locked Loops are Classical Time-Based Circuits

e(t) v(t) out(t)ref(t) Analog

Loop Filter
Phase

Detect

VCO

ref(t)

out(t)

e(t) v(t)

ref(t)

out(t)

e(t) v(t)

de Bellescize
Onde Electr, 1932

 VCO efficiently provides oscillating waveform with
variable frequency

 PLL synchronizes VCO frequency to input reference
frequency through feedback
- Key block is phase detector

 Realized as digital gates that create pulsed signals

7

Integer-N Frequency Synthesizers

 Use digital counter structure to divide VCO frequency
- Constraint: must divide by integer values

 Use PLL to synchronize reference and divider output

e(t) v(t) out(t)ref(t) Analog

Loop Filter
Phase

Detect

VCO

ref(t)

div(t)

e(t) v(t)

Divider

N

Fout = N Fref

div(t) Sepe and Johnston
US Patent (1968)

Analog output frequency is digitally controlled

8

e(t) v(t) out(t)ref(t) Analog

Loop Filter
Phase

Detect

VCO

Divider

N[k]

Fout = M.F Fref

div(t)

 Nsd[k] Σ−Δ

Modulator
M.F

ref(t)

div(t)

e(t) v(t)

Fractional-N Frequency Synthesizers

 Dither divide value to achieve fractional divide values
- PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved

Wells
US Patent (1984)

Riley
US Patent (1989)

JSSC ‘93

Kingsford-Smith
US Patent (1974)

9

Recent Trend: Move to a More Digital Implementation

 Digital loop filter: compact area, digital flow
 Key insight: faster CMOS processes allow faster edges,

lower delays, and overall improved time resolution
- Allows us to leverage Moore’s law for improving performance

Staszewski et. al.,
TCAS II, Nov 2003

out(t)ref(t) Analog

Loop Filter
Phase

Detect

VCO

Time

-to-

Digital

out(t)ref(t) Digital

Loop Filter

DCO

Divider

Divider

10

Improved TDC and Noise Cancellation Lowers Jitter

 < 250 fs (rms)
integrated phase noise
(1kHz to 40 MHz)

 Highly digital
implementation

10

Hsu et. al.,
ISSCC 2008

11

VCO-Based ADCs Use Time to Achieve High Resolution

 Peak SNDR of 78 dB with
20 MHz bandwidth

 Figure of merit: 330 fJ/step
11

Explicit
 DWA

Park et. al.,
ISSCC 2009

12

Mult-Phase PWM Enables Efficient RF modulator

Park et. al.,
RFIC 2010

 Meets 802.11g
spectral mask

13

Issues with Behavioral Simulation of Time-Based Circuits

 High output frequency High sample rate
 Long time constants Long time span for transients

Large number of simulation time steps required

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−Δ
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

10-100 kHz

M
M+1

1-10 GHz

 Consider a fractional-N synthesizer as a prototypical
time-based circuit

14

Continuously Varying Edge Times Create Accuracy Issues

 PFD output is not bandlimited
- PFD output must be simulated in discrete-time

 Phase error is inaccurately simulated
 Non-periodic dithering of divider complicates matters

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−Δ
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

15

Example: Classical Constant-Time Step Method

 Directly sample the PFD output according to the
simulation sample period
- Simple, fast, readily implemented in Matlab, Verilog, C++

 Issue – quantization noise is introduced
- This noise overwhelms the PLL noise sources we are

trying to simulate

PFD
e(t)ref(t)

e(t)
t

e[n]
n

Sample Period = Ts(Johns and Martin,
Analog Integrated Circuit Design)

16

Alternative: Event Driven Simulation

 Set simulation time samples at PFD edges
- Sample rate can be lowered to edge rate!

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1
(Smedt et al, CICC ’98,
Demir et al, CICC ’94,
Hinz et al, Circuits and Systems ’00)

17

Issue: Non-Constant Time Step Brings Complications

 Filters and noise sources must account for varying time
step in their code implementations

 Spectra derived from mixing and other operations can
display false simulation artifacts

 Setting of time step becomes progressively complicated
if multiple time-based circuits simulated at once

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1

18

Is there a better way?

19

Proposed Approach: Use Constant Time Step

 Straightforward CT to DT transformation of filter blocks
- Use bilinear transform or impulse invariance methods

 Overall computation framework is fast and simple
- Simulator can be based on Verilog, Matlab, C++

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

Ts

20

Problem: Quantization Noise at PFD Output

 Edge locations of PFD output are quantized
- Resolution set by time step: Ts

 Reduction of Ts leads to long simulation times

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

εTs Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

21

Proposed Approach: View as Series of Pulses

 Area of each pulse set by edge locations
 Key observations:

- Pulses look like impulses to loop filter
- Impulses are parameterized by their area and time offset

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

1

0

1

0

εTs Ts/2

area = εarea = Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

22

Proposed Area Conservation Method

 Set e[n] samples according to pulse areas
- Leads to very accurate results
- Fast computation

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

e[n]
n

1

0

1

0

1

0

εTs Ts/2

area = εarea = Ts/2

ε/Ts1/2
e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

23

Double_Interp Protocol

 Protocol sets signal samples to -1 or 1 except for
transitions
- Transition values between -1 and 1 are directly related to

the edge time location
- Can be implemented in C++, Verilog, and Matlab/Simulink

24

VCO is a Key Block for Double_Interp Encoding

 The VCO block is the key translator from a bandlimited
analog input to an edge-based waveform
 We can create routines in the VCO that calculate

the edge times of the output and encode their
values using the double_interp protocol

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

(Assume VCO output
is a square-wave
for this discussion)

25

Calculation of Transition Time Values

 Model VCO based on its phase

v[n]

VCO

out[n]

π

Φvco(t)

t

εk

out[n]

n

26

Calculation of Transition Time Values (cont.)

 Determine output transition time according to phase

v[n]

VCO

out[n]

π

Φvco(t)

t

Φ[k]

Φ[k-1]

out(t)

εk

π
out[n]

n

27

Calculation of Transition Time Values (cont.)

 Use first order interpolation to determine transition value

v[n]

VCO

out[n]

π

Φvco(t)

tεk Φ[k]-Φ[k-1]
π-Φ[k-1]

=

Φ[k]

Φ[k-1]

out(t)

out[n] n

εk

π

2 -1

out[n]

εk

n

28

Processing of Edges using Double_Interp Protocol

 Frequency divider block simply passes a sub-
sampling of edges based on the VCO output and
divide value

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

29

Processing of Edges using Double_Interp Protocol

 Phase Detector compares edges times between
reference and divided output and then outputs pulses
that preserve the time differences

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

30

Processing of Edges using Double_Interp Protocol

 Charge Pump and Loop filter operation is
straightforward to model
 Simply filter pulses from phase detector as

discussed earlier

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

31

Using the Double_Interp Protocol with Digital Gates

 Relevant timing information contained in the input
that causes the output to transition
- Determine which input causes the transition, then pass

its transition value to the output

a[n] n

b[n] n

n

a
b

out

out[n]

D
Q
Q

clk[n] n

out[n] n

n

clk
out

out

out[n]

A Closer Look at System Level Simulation

32

33

Consider a Top Down, Mixed-Signal Design Flow

System Design

Architecture

Circuit

Verification

Digital

Circuit Design

Analog

Circuit Design

Digital

Circuit

Verification

Analog

System

Verification

Circ. & Arch.

High Level

Investigation &

Analysis

System Level

Test Vectors

Schematic Creation
Code Creation

Place & Route

Extracted Layout

Creation

PVT Corners

Monte Carlo

Digital Test Vectors

Timing Checks

34

New Circuit Architectures Require Innovation

System Design

Architecture

Circuit

Verification

Digital

Circuit Design

Analog

Circuit Design

Digital

Circuit

Verification

Analog

System

Verification

Circ. & Arch.

Innovation

Execution

 Key to innovation is
fast and detailed
simulation of new
architectures
- Allows evaluation

of many new ideas
- Pinpoints key

problem areas

35

C++ and Verilog Offer Fast System Level Simulation

System Design

Architecture

Circuit

Verification

Digital

Circuit Design

Analog

Circuit Design

Digital

Circuit

Verification

Analog

System

Verification

Circ. & Arch.

Innovation

Execution

 We will focus on
using C++ and
Verilog for Time-
Based Circuis

36

Verilog Versus C++ as Behavioral Simulators

 Increasing in popularity
for digital simulation
- SystemC, SystemVerilog

 Extremely powerful
language for analog
modeling
- Class and function

support allows simple
path to sophisticated
modeling

 Faster choice for
systems that require
continual update in their
blocks

C++Verilog
 Popular in the US for

digital verification

 Fairly limited as a
language for analog
modeling
- Relatively time

consuming to implement
behavioral models

 Faster choice for
systems that have sparse
transition activity

An Approach That Seems to Work Well

37

System Design

Architecture

Circuit

Verification

Digital

Circuit Design

Analog

Circuit Design

Digital

Circuit

Verification

Analog

System

Verification

Circ. & Arch.

High Level

Investigation &

Analysis

System Level

Test Vectors

Schematic Creation
Code Creation

Place & Route

Extracted Layout

Creation

PVT Corners

Monte Carlo

Digital Test Vectors

Timing Checks

C++

Verilog

How Do We Make This Approach Efficient?

 Would like to
incorporate Verilog
models into C++
- Provides accurate

models for digital
processing and
control

 Would like to
incorporate C++
models into Verilog
- Allows re-use of

critical block
models

- Provides C++ for
complex test
vector generation

38

System Design

Architecture

Circuit

Verification

Digital

Circuit Design

Analog

Circuit Design

Digital

Circuit

Verification

Analog

System

Verification

Circ. & Arch.

High Level

Investigation &

Analysis

System Level

Test Vectors

C++

Verilog

39

CppSim and VppSim Offer C++/Verilog Co-Simulation

 CppSim
- C++ is the simulation engine

 Verilog code translated into C++ classes using Verilator
- Best option when system simulation focuses on analog

performance with digital support
 VppSim

- NCVerilog is the simulation engine
 C++ blocks accessed through the Verilog PLI

- Best option when system simulation focuses on digital
verification with C++ stimulus

Each of these packages can be downloaded at
http://www.cppsim.com

and are free for both commercial and academic use
(VppSim requires an NCVerilog license)

40

Screenshot of CppSim (Windows Version)

Cadence version is also free (part of VppSim package)

41

Screenshot of CppSim/VppSim (Cadence Version)

Interfaces with Matlab,
GTKWave, and SimVision

42

A Closer Look at CppSim/VppSim Methodology

 Schematic
- Provides

hierarchical
description of
system
topology

 Code blocks
- Specify

module
behavior
using
templated C++
code or
Verilog code

 Designers graphically develop system based on a
library of C++/Verilog symbols and code
- Easy to create new symbols with accompanying code

PFD
Charge
Pump

Σ−Δ

Modulator

Loop
Filter

Divider

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

1 D Q
R

1 D Q

R

Verilog Module

Description

1

1

2

3 4 5 6

1

2

3 4

C++ Class for

Module 1

C++ Class for

Module 2

C++ Class for

Submodule 1

C++ Class for

Module 3

C++ Class for

Submodule 2

C++ Class for

Submodule 3

C++ Class for

Submodule 4

C++ Class for

Module 4

C++ Class for

Module 5

C++ Class for

Module 6

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

CppSim Module

Description

Name

Inputs, Outputs

Parameters

Code

Verilog Module

Description

1

43

CppSim Automates C++ Class Generation

 Modules are identified from schematic and then
- CppSim modules are converted into C++ classes
- Verilog modules are translated into C++ classes using Verilator

44

CppSim Assembles C++ Classes into Overall Sim Code

1

1

1

2

3 4 5 6

1

2

3 4

C++ Class for

Module 1

C++ Class for

Module 2

C++ Class for

Submodule 1

C++ Class for

Module 3

C++ Class for

Submodule 2

C++ Class for

Submodule 3

C++ Class for

Submodule 4

C++ Class for

Module 4

C++ Class for

Module 5

C++ Class for

Module 6

Module 1

Module 2

Module 3

Submodule 1

Submodule 2

Submodule 3

Submodule 4

Module 4

Module 5

Module 6

C++ Class for Top Module

 Block-by-block
execution of each
module at each
time step

 Hierarchical
description is
retained

45

C++ Class for

Module 1

C++ Class for

Module 2

C++ Class for

Submodule 1

C++ Class for

Module 3

C++ Class for

Submodule 2

C++ Class for

Submodule 3

C++ Class for

Submodule 4

C++ Class for

Module 4

C++ Class for

Module 5

C++ Class for

Module 6

Module 1

Module 2

Module 3

Submodule 1

Submodule 2

Submodule 3

Submodule 4

Module 4

Module 5

Module 6

C++ Class for Top Module

Call C++ Top Module

Loop

Record Probed Signal Values

CppSim Code

If (Final Simulation Sample)
Break

Fast C++ Simulation

Call C++ Top Module

(for one time step)

PLI Header Code

PLI to C++ Signal Conversion

Verilog PLI Code

Seamless Verilog Support

C++ to PLI Signal Conversion

Call C++ Top Module

(for many time steps)

Mex Header Code

Mex to C++ Signal Conversion

Matlab Mex Code

Seamless Matlab Support

C++ to Mex Signal Conversion

C++ Code Is Easily Embedded In Other Simulators

 CppSim provides automatic Matlab mex file generation
 VppSim embeds C++ into NCVerilog simulator

46

VppSim Example: Embed CppSim Module in NCVerilog

module: leadlagfilter
parameters: double fz, double fp,

double gain
inputs: double in
outputs: double out
static_variables:
classes: Filter filt("1+1/(2*pi*fz)s",

"C3*s + C3/(2*pi*fp)*s^2",
"C3,fz,fp,Ts",1/gain,fz,fp,Ts);

init:
code:
filt.inp(in);
out = filt.out;

////// Auto-generated from CppSim module //////
module leadlagfilter(in, out);

parameter fz = 0.00000000e+00;
parameter fp = 0.00000000e+00;
parameter gain = 0.00000000e+00;
input in;
output out;

wreal in;
real in_rv;
wreal out;
real out_rv;

assign out = out_rv;

initial begin
assign in_rv = in;

end

always begin
#1
$leadlagfilter_cpp(in_rv,out_rv,fz,fp,gain);

end
endmodule

CppSim module Resulting Verilog module

47

VppSim Example: Using Busses in CppSim Module

module: queue2
parameters: int bit_width
inputs: double_interp clk,

double rst_n,
bool in[2047:0],
int enqueue,
bool dequeue[31:0]

outputs: bool out[2047:0],
bool not_empty[31:0],
int not_full

/////////// Auto-generated from CppSim module ///////////
module queue2(clk, rst_n, in, enqueue,

dequeue, out, not_empty,
not_full);

parameter bit_width = 0;
input clk;
input rst_n;
input [2047:0] in;
input [31:0] enqueue;
input [31:0] dequeue;
output [2047:0] out;
output [31:0] not_empty;
output [31:0] not_full;

wreal clk;
real clk_rv;
wreal rst_n;
real rst_n_rv;

CppSim module Resulting Verilog module

Many Tutorials Available for CppSim/VppSim

 Wideband Digital fractional-N frequency synthesizer
 VCO-based Analog-to-Digital Convertor
 GMSK modulator
 Decision Feedback Equalization
 Optical-Electrical Downversion and Digitization
 OFDM Transceiver
 C++/Verilog Co-Simulation

48

See http://www.cppsim.com

49

Case Study: MEMS-based Programmable Oscillators

 A part for each frequency
and non-plastic packaging
- Non-typical frequencies

require long lead times

 Same part for all frequencies
and plastic packaging
- Pick any frequency you want

without extra lead time

Quartz Oscillators MEMS-based Oscillator

Key benefit: high volumes at low cost using IC fabrication

source: www.ecliptek.com

50

Architecture of MEMS-Based Programmable Oscillator

 MEMS device provides high Q resonance at 5 MHz
- CMOS circuits provide DC bias and sustaining amplifier

 Fractional-N synthesizer multiplies 5 MHz MEMS
reference to a programmable range of 750 to 900 MHz

 Programmable frequency divider enables 1 to 115 MHz
output

Fractional-N

Synthesizer

Oscillator Sustaining

Circuit and

Charge Pump Continuously

Programmable

MEMS

Resonator

5 MHz

Digital
Frequency Setting

750-900 MHz

Programmable

Frequency

Divider

1 to 115 MHz

51

Compensation of Temperature Variation

 High resolution control of fractional-N synthesizer allows
simple method of compensating for MEMS frequency
variation with temperature
- Simply add temperature sensor and digital compensation logic

Fractional-N

Synthesizer

Oscillator Sustaining

Circuit and

Charge Pump

Temp

Freq Error (ppm)

Digital

Logic

Temperature

Sensor

Temp

Freq Compensation (ppm)

Temp

Freq Error (ppm)

MEMS

Resonator

5 MHz

Digital
Frequency Setting

750-900 MHz

Programmable

Frequency

Divider Continuously

Programmable

1 to 115 MHz

52

Achieving Fast and Accurate System Level Simulation

Fractional-N

Synthesizer

Oscillator Sustaining

Circuit and

Charge Pump

Temp

Freq Error (ppm)

Digital

Logic

Temperature

Sensor

Temp

Freq Compensation (ppm)

Temp

Freq Error (ppm)

MEMS

Resonator

5 MHz

Digital
Frequency Setting

750-900 MHz

Programmable

Frequency

Divider Continuously

Programmable

1 to 115 MHz

 System level simulation involves several types of circuits
 Fractional-N synthesizer and MEMS oscilllator are time-based
 Temperature sensor is traditional analog
 Many digital blocks interact with the above

53

Measured Results Confirm CppSim/VppSim Flow

−50 0 50 100
−50

−40

−30

−20

−10

0

10

20

30

40

50

Temperature (degC)
F

re
q

u
en

cy
 V

ar
ia

ti
o

n
 (

P
P

M
) 1013

Parts

 Measured phase
noise closely
matches simulations

 Measured frequency
stability is similar to
many quartz parts

Benchmark of Simulators on Entire IC

 Detailed architectural model using CppSim
- Allows examination of noise and analog dynamics
- Execution time: 2.8 milliseconds/hour

 Detailed verification model using VppSim
- Allows validation of digital functionality in the context of

analog control and hybrid digital/analog systems
- Execution time: 7 milliseconds/minute

 Spice-level model
- Allows checking of floating gate, over-voltage

conditions, startup of bandgap and regulators, etc.
- Execution time:

 Spectre Turbo: 2 microseconds/day
 BDA: 8 microseconds/day

54

Tabulated simulation times for our next generation
MEMS oscillator:

Conclusions

 Time-based circuits are becoming more mainstream
due their advantages in advanced CMOS processes
- Digital phase-locked loops
- VCO-based Analog-to-Digital Conversion
- RF transmitters leveraging pulse width modulation

 Fast and accurate system level simulation of such
circuits can be achieved with the “double_interp”
protocol

 CppSim and VppSim provide a simple and free
approach to achieving C++/Verilog Co-Simulation
- CppSim is useful for primarily analog focus
- VppSim is useful for primarily digital focus

55

