A 4th Order Continuous-Time ΔΣ ADC with VCO-Based Integrator and Quantizer

ISSCC 2009, Session 9.5

Matt Park¹, Michael H. Perrott²

¹ Massachusetts Institute of Technology, Cambridge, MA USA
 ² SiTime Corporation, Sunnyvale, CA, USA

Motivation

- A highly digital receive path is very attractive for achieving multi-standard functionality
- A key issue is achieving a wide bandwidth ADC with high resolution and low power
 - Minimal anti-alias requirements are desirable for simplicity

Continuous-Time Sigma-Delta ADC structures have very attractive characteristics for this space

A Basic Continuous-Time Sigma-Delta ADC Structure

- Sampling occurs at the quantizer after filtering by H(s)
- Quantizer noise is shaped according to choice of H(s)
 - High open loop gain required to achieve high SNR

We will focus on achieving an efficient implementation of the multi-level quantizer by using a ring oscillator

Application of Ring Oscillator as an ADC Quantizer

- Input: analog tuning of ring oscillator frequency
- Output: count of oscillator cycles per Ref clock period

VCO-Based Quantizer Also Shapes Delay Mismatch

Barrel shifting through delay elements

Mismatch between delay elements is first order shaped

Benefits of VCO-based Quantization

Much more digital implementation

- No resistor ladder or differential gain stages
- Offset and mismatch is not of critical concern
- Metastability behavior is improved

Implementation is high speed, low power, low area

Frequency Domain Model of VCO Quantizer

Example SNDR with 20 MHz BW (1 GHz Sample Rate)

Reducing the Impact of Nonlinearity using Feedback

- Place VCO-based quantizer within a continuous-time Sigma-Delta ADC structure
 - Quantizer nonlinearity suppressed by preceding gain stage

A Second Order Continuous-Time Sigma-Delta ADC

Peak SNDR limited by Kv non-linearity to 67 dB (20 MHz BW)

How Do We Overcome K_v Nonlinearity to Improve SNDR?

Voltage-to-Frequency VCO-based ADC (1st Order Σ - Δ)

In prior work, VCO frequency is desired output variable

- Input must span the entire non-linear voltage-to-frequency (K_v) characteristic to exercise full dynamic range
- Strong distortion at extreme ends of the Kv curve

Proposed Voltage-to-Phase Approach (1st Order Σ - Δ)

- VCO output *phase* is now the output variable
 - Small perturbation on V_{tune} allows large VCO phase shift
 - VCO acts as a CT integrator with *infinite* DC gain

High SNDR requires higher order $\Sigma - \Delta$...

Proposed 4th Order Architecture for Improved SNDR

- Goal: ~80 dB SNDR with 20 MHz bandwidth
 - Achievable with 4th order loop filter, 4-bit VCO-based quantizer
 - 4-bit quantizer: tradeoff resolution versus DEM overhead
- Combined frequency/phase feedback for stability/SNDR

Schematic of Proposed Architecture

- Opamp-RC integrators
 - Better linearity than Gm-C, though higher power

Schematic of Proposed Architecture

Passive summation performed with resistors

- Low power
- Must design carefully to minimize impact of parasitic pole

Schematic of Proposed Architecture

- DEM *implicitly* performed on frequency feedback
 - RZ DAC unit elements (Note: Miller, US Patent (2004))

Behavioral Simulation (available at www.cppsim.com)

VCO nonlinearity is not the bottleneck for achievable SNDR!

Circuit Details

VCO Integrator Schematic

- 15 stage current starved ring-VCO
 - 7 stage ring-VCO shown for simplicity
 - Pseudo differential control
 - PVT variation accommodated by enable switches on PMOS/NMOS

 Rail-to-rail VCO output phase signals (VDD to GND)

VCO Quantizer Schematic

Phase quantization with senseamp flip-flop Single phase clocking

 Rail-to-rail quantizer output signals (VDD to GND)

21

Phase Quantizer, Phase and Frequency Detector

Highly digital implementation

- Phase sampled & quantized by SAFF
- XOR phase and frequency detection with FF and XOR
- Automatic DWA for frequency detector output code
 - Must explicitly perform DWA on phase detector output code

Main Feedback DAC Schematic

- Low-swing buffers
 - Keeps switch devices in saturation
 - Fast "on" / Slow
 "off" reduces
 glitches at DAC
 output
 - Uses external Vdd/Vss

Resistor degeneration minimizes 1/f noise

Bit-Slice of Minor Loop RZ DAC

RZ DAC unit elements transition every sample period

- Breaks code-dependency of transient mismatch (ISI)
- Uses full-swing logic signals for switching

Opamp Schematic

Parameter	Value
DC Gain	63 dB
Unity-Gain Frequency	4.0 GHz
Phase Margin	55°
Input Referred Noise Power (20 MHz BW)	11 uV (rms)
Power (V _{DD} = 1.5 V)	22.5 mW

- Modified nested Miller opamp
 - 4 cascaded gain stages, 2 feedforward stages
 - Behaves as 2-stage Miller near cross-over frequencies
 - Opamp 1 power is 2X of opamps 2 and 3 (for low noise)

DEM Architecture (3-bit example)

Achieves low-delay to allow 4-bit DEM at 900 MHz

Code through barrel shift propagates in half a sample period

Die Photo (0.13u CMOS)

Active area

- 0.45 mm²
- Sampling Freq
 - 900 MHz
- Input BW
 - 20 MHz
- Supply Voltage
 - **1.5 V**
- Analog Power
 - 69 mW
- Digital Power18 mW

Measured Results

- 78 dB Peak SNDR performance in 20 MHz
 - Bottleneck: transient mismatch from main feedback DAC
- Architecture robust to VCO K_v non-linearity

Figure of Merit: 330 fJ/Conv with 78 dB SNDR

Behavioral Model Reveals Key Performance Issue

- Amplifier nonlinearity degrades SNDR to 81 dB DAC transient mismatch degrades SNDR to 78 dB
 - DEM does not help
 - Could be improved with dual RZ structure

Transient DAC mismatch is likely the key bottleneck

Conclusion

- VCO-based quantization is a promising component to achieve high performance $\Sigma \Delta$ ADC structures
 - High speed, low power, low area implementation
 - First order shaping of quantization noise and mismatch
 - Kv non-linearity was a limitation in previous approaches
- Demonstrated a 4th-order CT ΔΣ ADC with a VCO-based integrator and quantizer
 - Proposed voltage-to-phase conversion to avoid distortion from Kv non-linearity
 - Achieved 78 dB SNDR in 20 MHz BW with 87 mW power
 - Key performance bottleneck: transient DAC mismatch