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Motivation

A highly digital receive path is very attractive for 
achieving multi-standard functionality
A key issue is achieving a wide bandwidth ADC with high 
resolution and low power
- Minimal anti-alias requirements are desirable for simplicity

Continuous-Time Sigma-Delta ADC structures
have very attractive characteristics for this space
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A Basic Continuous-Time Sigma-Delta ADC Structure

Sampling occurs at the quantizer after filtering by H(s)
Quantizer noise is shaped according to choice of H(s)
- High open loop gain required to achieve high SNR
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We will focus on achieving an efficient implementation
of the multi-level quantizer by using a ring oscillator
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Input:  analog tuning of ring oscillator frequency
Output:  count of oscillator cycles per Ref clock period
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Alon, Stojanovic, Horowitz
JSSC 2005

Kim, Cho, ISCAS 2006

Similar approaches:

Application of Ring Oscillator as an ADC Quantizer
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VCO-Based Quantizer Also Shapes Delay Mismatch

Barrel shifting through delay elements
- Mismatch between delay elements is first order shaped
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Benefits of VCO-based Quantization

Much more digital implementation
- No resistor ladder or differential gain stages

Offset and mismatch is not of critical concern
Metastability behavior is improved
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VCO modeled as integrator 
and Kv nonlinearity
Sampling of VCO phase 
modeled as scale factor of 1/T
Quantizer modeled as 
addition of quantization noise

Key non-idealities:
- Quantization noise

- First order shaped!
- VCO noise
- VCO Kv nonlinearity
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Example SNDR with 20 MHz BW (1 GHz Sample Rate)
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Reducing the Impact of Nonlinearity using Feedback

Place VCO-based quantizer within a continuous-time       
Sigma-Delta ADC structure
- Quantizer nonlinearity suppressed by preceding gain 

stage

Iwata, Sakimura, TCAS II, 1999
Naiknaware, Tang, Fiez, TCAS II, 2000
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Peak SNDR limited by Kv non-linearity to 67 dB (20 MHz BW)
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A Second Order Continuous-Time Sigma-Delta ADC
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Third order noise 
shaping with a second 
order structure!

0.13u CMOS IC



How Do We Overcome Kv Nonlinearity to 
Improve SNDR?
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Voltage-to-Frequency VCO-based ADC (1st Order Σ−Δ)

In prior work, VCO frequency is desired output variable
- Input must span the entire non-linear voltage-to-frequency 

(Kv) characteristic to exercise full dynamic range
- Strong distortion at extreme ends of the Kv curve
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Proposed Voltage-to-Phase Approach (1st Order Σ−Δ)

VCO output phase is now the output variable
- Small perturbation on Vtune allows large VCO phase shift
- VCO acts as a CT integrator with infinite DC gain

13
High SNDR requires higher order Σ−Δ …



Proposed 4th Order Architecture for Improved SNDR

Goal:  ~80 dB SNDR with 20 MHz bandwidth
- Achievable with 4th order loop filter, 4-bit VCO-based quantizer
- 4-bit quantizer:   tradeoff resolution versus DEM overhead

Combined frequency/phase feedback for stability/SNDR
14



Schematic of Proposed Architecture

Opamp-RC integrators
- Better linearity than Gm-C, though higher power

Explicit
 DWA
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Schematic of Proposed Architecture

Passive summation performed with resistors
- Low power
- Must design carefully to minimize impact of parasitic pole

Explicit
 DWA
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Schematic of Proposed Architecture

DEM explicitly performed on phase feedback
- NRZ DAC unit elements

DEM implicitly performed on frequency feedback
- RZ DAC unit elements   (Note:  Miller, US Patent (2004))
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Behavioral Simulation (available at www.cppsim.com) 

VCO Kv non-
linearity
Device noise
Amplifier finite 
gain, finite BW
DAC and VCO 
unit element 
mismatch

Key Nonidealities

VCO nonlinearity is not the bottleneck for achievable SNDR!
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Circuit Details
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VCO Integrator Schematic

15 stage current 
starved ring-VCO 
- 7 stage ring-VCO 

shown for simplicity
- Pseudo differential 

control
- PVT variation 

accommodated by 
enable switches on 
PMOS/NMOS

Rail-to-rail VCO 
output phase signals 
(VDD to GND)

Straayer, VLSI 2007

20



VCO Quantizer Schematic

Phase 
quantization 
with sense-
amp flip-flop 
- Single 

phase 
clocking

Rail-to-rail 
quantizer 
output 
signals (VDD 
to GND)

Nikolic et al, JSSC 2000
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Phase Quantizer, Phase and Frequency Detector

Phase Output
Frequency Output
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Highly digital 
implementation
- Phase sampled & 

quantized by SAFF
- XOR phase and 

frequency 
detection with FF 
and XOR

Automatic DWA for 
frequency detector 
output code
- Must explicitly 

perform DWA on 
phase detector 
output code
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JSSC 2004



Bit-Slice of Minor Loop RZ DAC

RZ DAC unit elements transition every sample period
- Breaks code-dependency of transient mismatch (ISI)
- Uses full-swing logic signals for switching
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Opamp Schematic

Modified nested Miller opamp
- 4 cascaded gain stages, 2 

feedforward stages
- Behaves as 2-stage Miller near 

cross-over frequencies
- Opamp 1 power is 2X of 

opamps 2 and 3 (for low noise)

Parameter Value
DC Gain 63 dB
Unity-Gain Frequency 4.0 GHz
Phase Margin 55°
Input Referred Noise 
Power (20 MHz BW)

11 uV 
(rms)

Power (VDD = 1.5 V) 22.5 mW

Mitteregger et al, JSSC 2006
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DEM Architecture (3-bit example)

Achieves low-delay to allow 4-bit DEM at 900 MHz
- Code through barrel shift propagates in half a sample period

Therm. to
  Binary

Barrel Shift
8 8

5 2 3 65 2 3 6

3 3

Accumulator

clk

NRZ
DAC
Inputs

Phase
Quantizer
Output

See also:
Yang

ISSCC 2008



Die Photo (0.13u CMOS)

Die photo courtesy of Annie Wang (MTL)
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Active area
0.45 mm2

Sampling Freq
900 MHz

Input BW
20 MHz

Supply Voltage
1.5 V

Analog Power
69 mW

Digital Power
18 mW
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Measured Results

78 dB Peak SNDR performance in 20 MHz
- Bottleneck:  transient mismatch from main feedback DAC

Architecture robust to VCO Kv non-linearity
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Figure of Merit:  330 fJ/Conv with 78 dB SNDR



Transient DAC mismatch is likely the key bottleneck

Behavioral Model Reveals Key Performance Issue

Amplifier 
nonlinearity 
degrades 
SNDR to 81 dB 
DAC transient 
mismatch 
degrades 
SNDR to 78 dB
- DEM does 

not help
- Could be 
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Conclusion

VCO-based quantization is a promising component to 
achieve high performance Σ−Δ ADC structures
- High speed, low power, low area implementation
- First order shaping of quantization noise and mismatch
- Kv non-linearity was a limitation in previous approaches

Demonstrated a 4th-order CT ΔΣ ADC with a           
VCO-based integrator and quantizer
- Proposed voltage-to-phase conversion to avoid 

distortion from Kv non-linearity
- Achieved 78 dB SNDR in 20 MHz BW with 87 mW power

Key performance bottleneck:  transient DAC mismatch
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