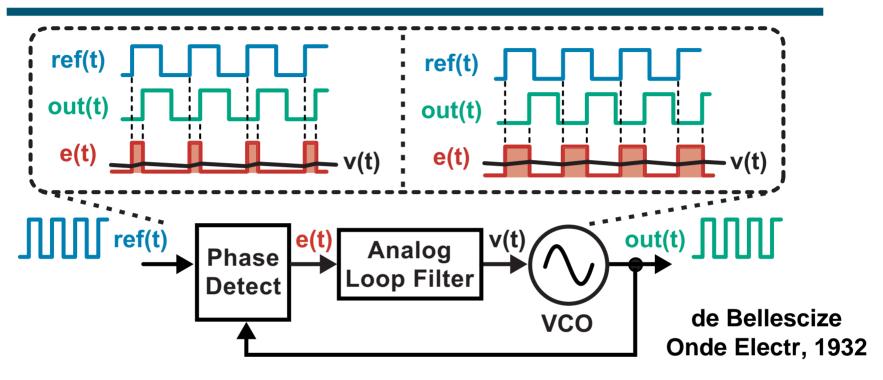
Short Course On Phase-Locked Loops IEEE Circuit and System Society, San Diego, CA

Analog Frequency Synthesizers

Michael H. Perrott September 16, 2009

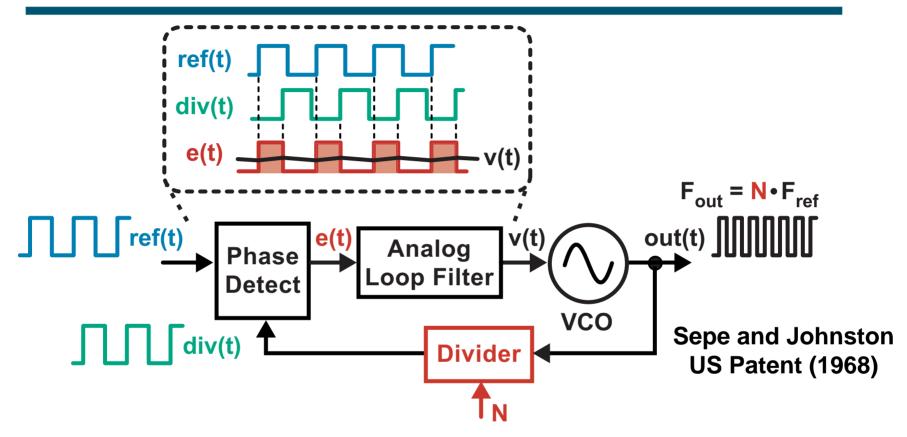
Copyright © 2009 by Michael H. Perrott All rights reserved.

What is a Phase-Locked Loop (PLL)?



- VCO efficiently provides oscillating waveform with variable frequency
- PLL synchronizes VCO frequency to input reference frequency through feedback
 - Key block is phase detector
 - Realized as digital gates that create pulsed signals

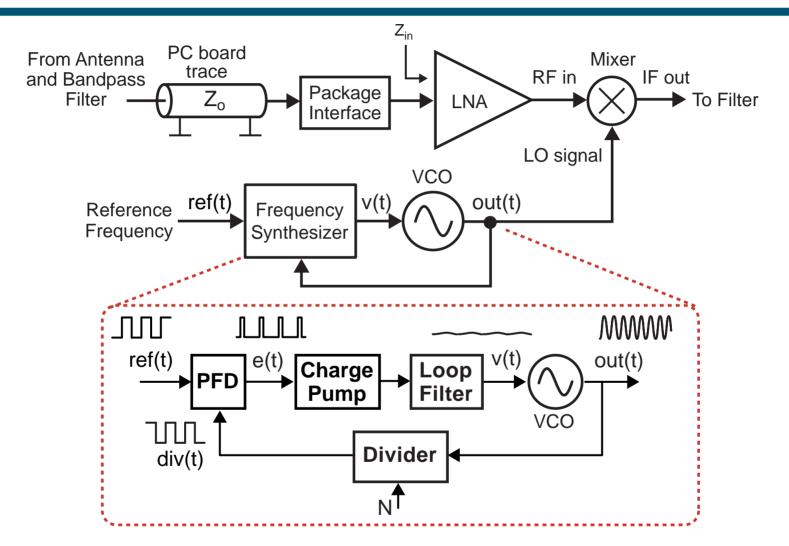
Integer-N Frequency Synthesizers



- Use digital counter structure to divide VCO frequency
 - Constraint: must divide by integer values
- Use PLL to synchronize reference and divider output

Output frequency is digitally controlled

Integer-N Frequency Synthesizers in Wireless Systems



Design Issues: low noise, fast settling time, low power M.H. Perrott

Fractional-N Frequency Synthesizers

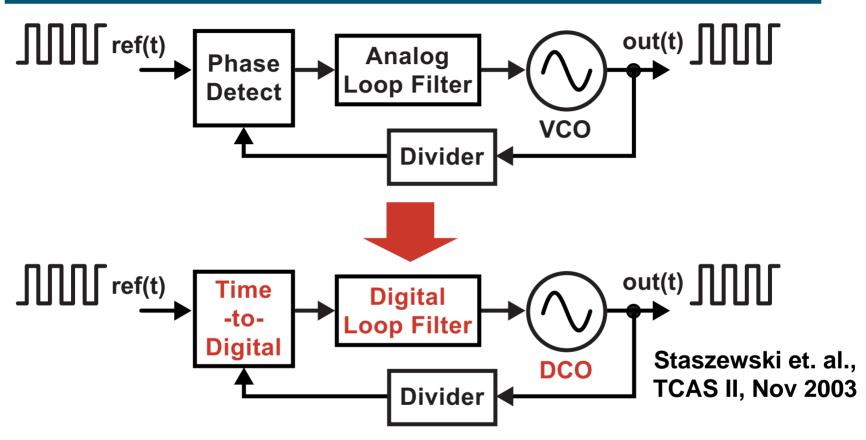


Dither divide value to achieve fractional divide values

PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved

Going Digital ...

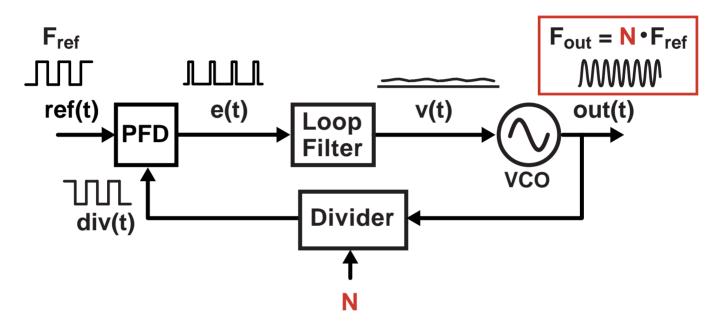


- Digital loop filter: compact area, insensitive to leakage
- Challenges:
 - Time-to-Digital Converter (TDC)
 - Digitally-Controlled Oscillator (DCO)

Outline of PLL Short Course

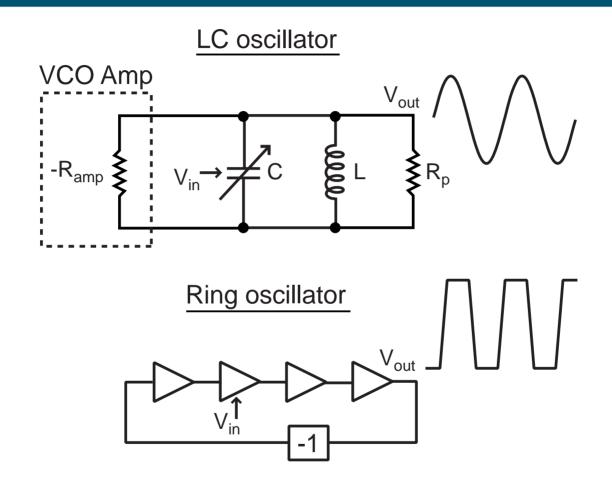
- Analog frequency synthesizers
 - Integer-N synthesizers and PLL background
 - Fractional-N synthesizers
- Digital frequency synthesizers
 - Modeling and noise analysis
 - Time-to-digital conversion

Outline of Integer-N Frequency Synthesizer Talk



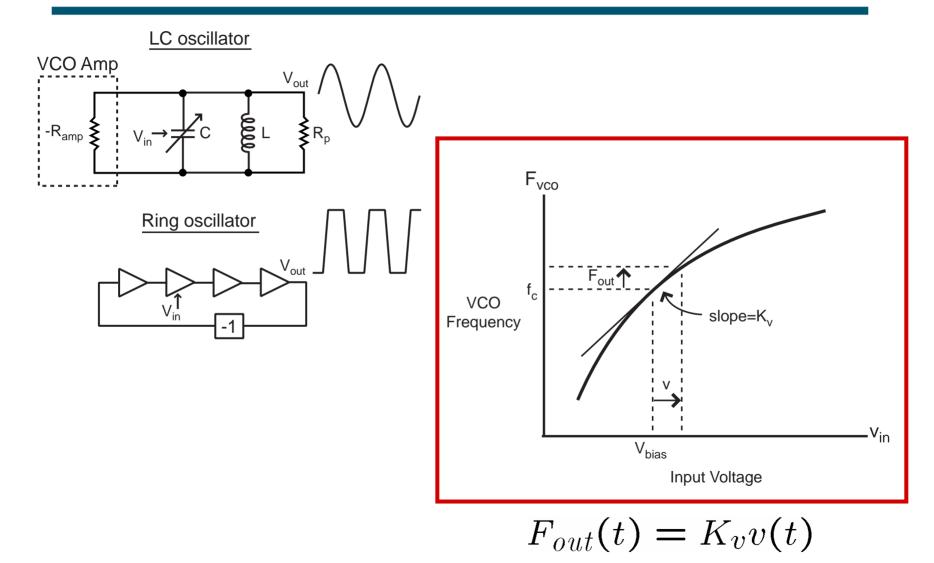
- Overview of PLL Blocks
- System Level Modeling
 - Transfer function analysis
 - Nonlinear behavior
 - Type I versus Type II systems
- Noise Analysis

Popular VCO Structures



- LC Oscillator: low phase noise, large area
- Ring Oscillator: easy to integrate, higher phase noise

Model for Voltage to Frequency Mapping of VCO

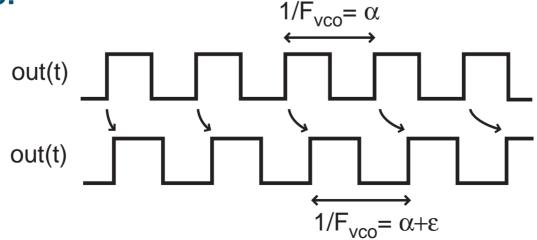


Model for Voltage to Phase Mapping of VCO

- Time-domain frequency relationship (from previous slide) $F_{out}(t) = K_v v(t)$
- Time-domain phase relationship

$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi F_{out}(\tau) d\tau = \int_{-\infty}^{t} 2\pi K_v v(\tau) d\tau$$

Intuition of integral relationship between frequency and phase:

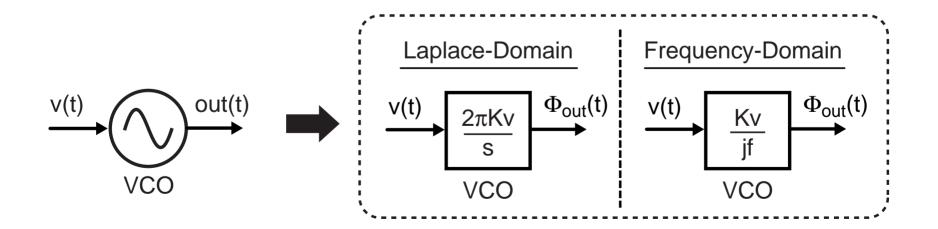


Frequency-Domain Model for VCO

Time-domain relationship (from previous slide)

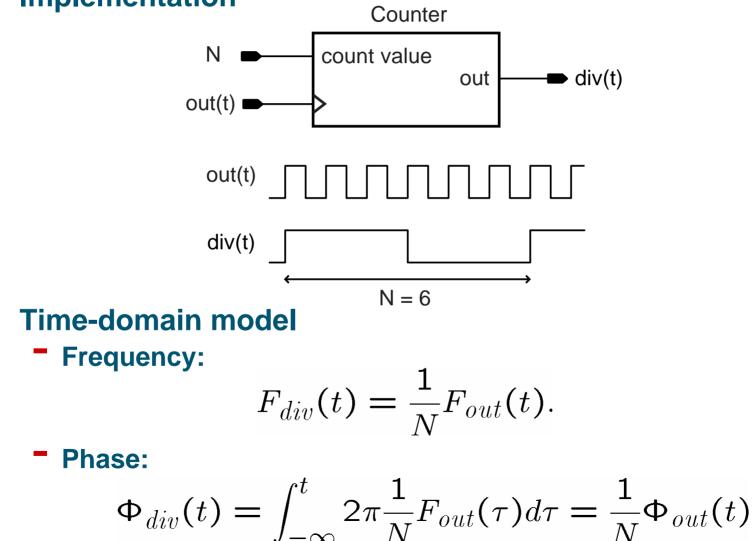
$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi K_v v(\tau) d\tau$$

Corresponding frequency-domain model



Divider

Implementation

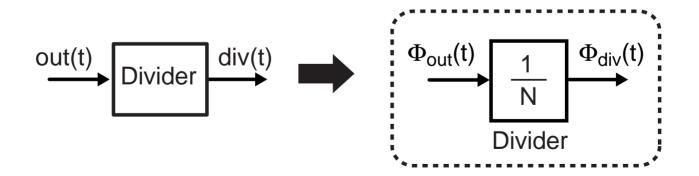


Frequency-Domain Model of Divider

Time-domain relationship between VCO phase and divider output phase (from previous slide)

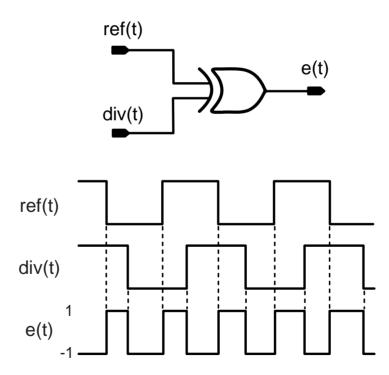
$$\Phi_{div}(t) = \frac{1}{N} \Phi_{out}(t)$$

 Corresponding frequency-domain model (same as Laplace-domain)

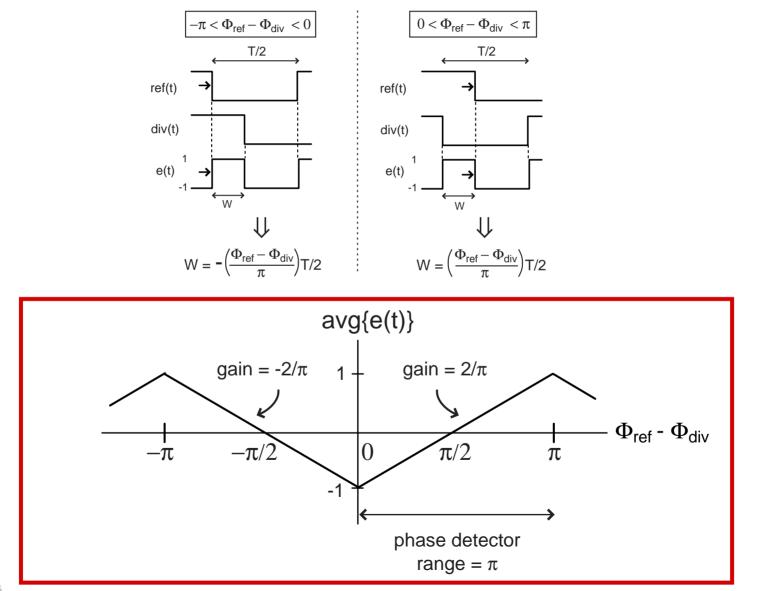


Phase Detector (PD)

- XOR structure
 - Average value of error pulses corresponds to phase error
 - Loop filter extracts the average value and feeds to VCO

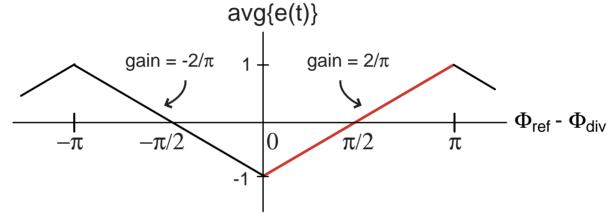


XOR Phase Detector Characteristic

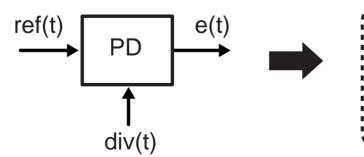


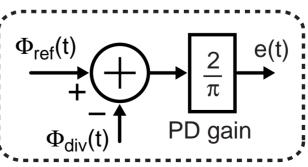
Frequency-Domain Model of XOR Phase Detector

- Assume phase difference confined within 0 to π radians
 - Phase detector characteristic looks like a constant gain element



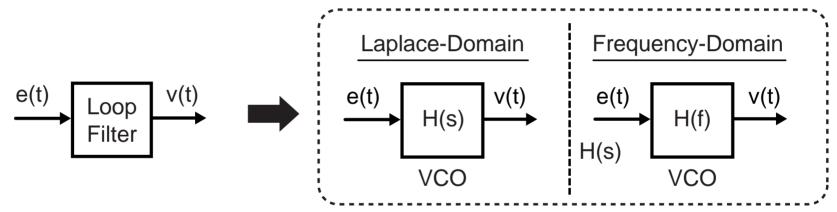
Corresponding frequency-domain model



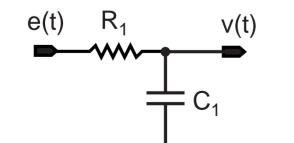


Loop Filter

- Consists of a lowpass filter to extract average of phase detector error pulses
- Frequency-domain model



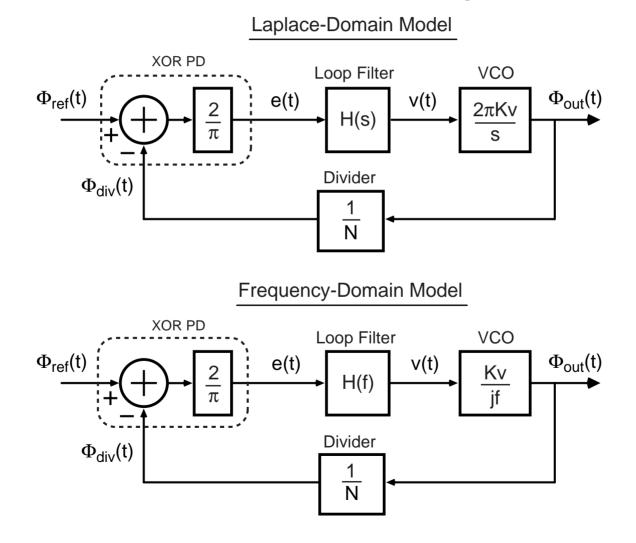
First order example



$$\Rightarrow H(s) = \frac{1}{1 + sR_1C_1}$$

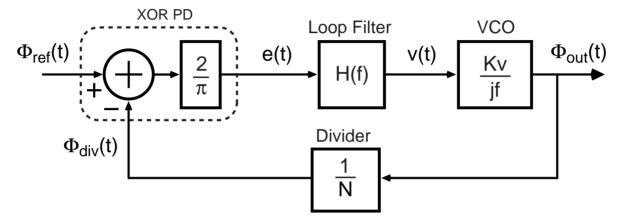
Overall Linearized PLL Frequency-Domain Model

Combine models of individual components



Open Loop versus Closed Loop Response

Frequency-domain model



Define A(f) as open loop response

$$A(f) = \frac{2}{\pi} H(f) \left(\frac{K_v}{jf}\right) \frac{1}{N}$$

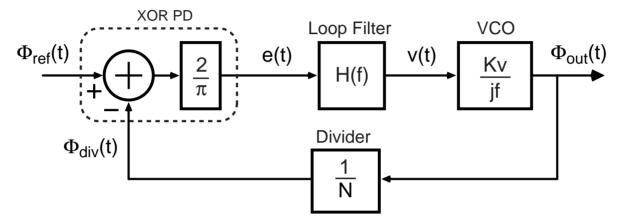
- Define G(f) as a parameterizing closed loop function
 - More details later in this lecture

$$G(f) = \frac{A(f)}{1 + A(f)}$$

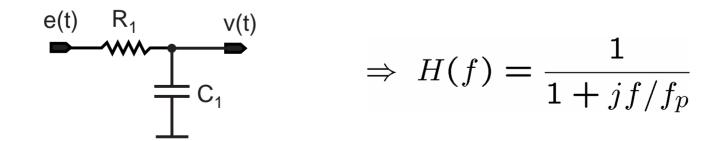
Classical PLL Transfer Function Design Approach

- 1. Choose an appropriate topology for H(f)
 - Usually chosen from a small set of possibilities
- 2. Choose pole/zero values for H(f) as appropriate for the required filtering of the phase detector output
 - Constraint: set pole/zero locations higher than desired PLL bandwidth to allow stable dynamics to be possible
- 3. Adjust the open-loop gain to achieve the required bandwidth while maintaining stability
 - Plot gain and phase bode plots of A(f)
 - Use phase (or gain) margin criterion to infer stability

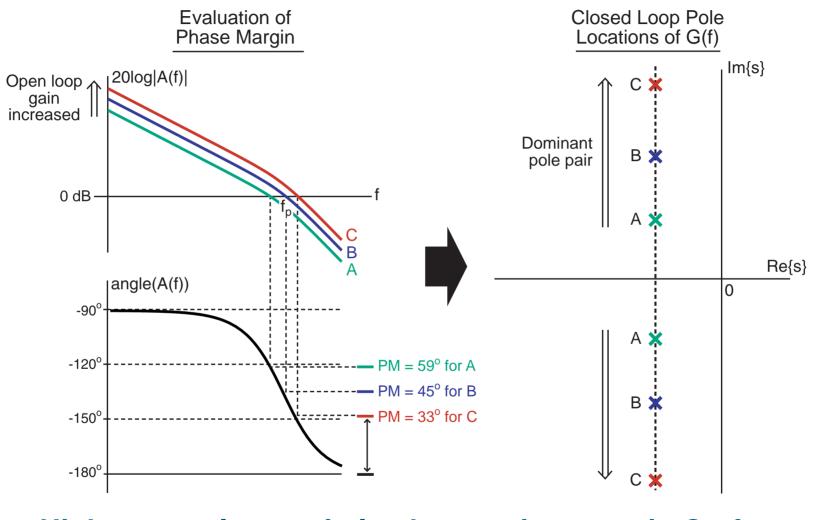
Overall PLL block diagram



Loop filter

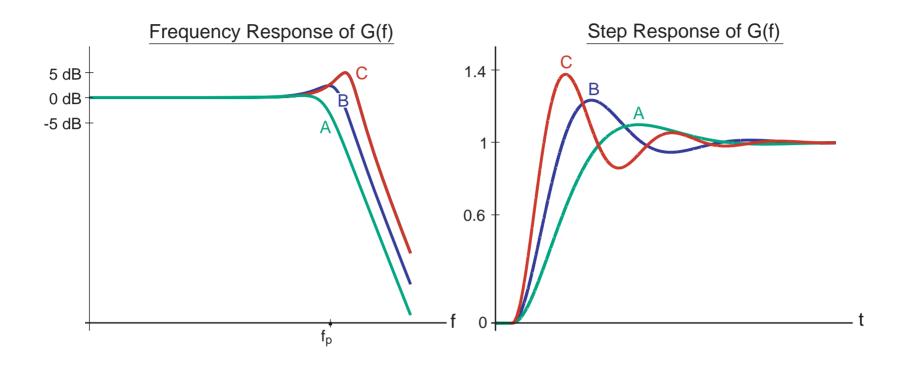


Closed Loop Poles Versus Open Loop Gain



Higher open loop gain leads to an increase in Q of closed loop poles

Corresponding Closed Loop Response



Increase in open loop gain leads to

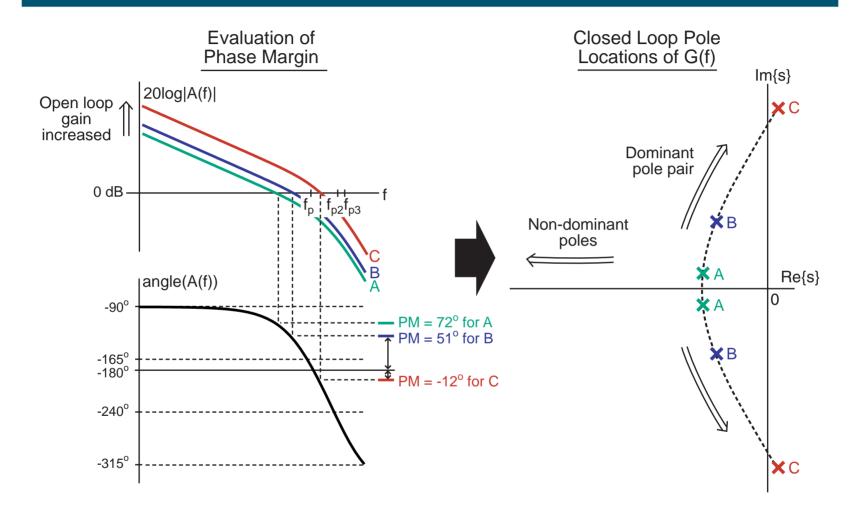
- Peaking in closed loop frequency response
- Ringing in closed loop step response

The Impact of Parasitic Poles

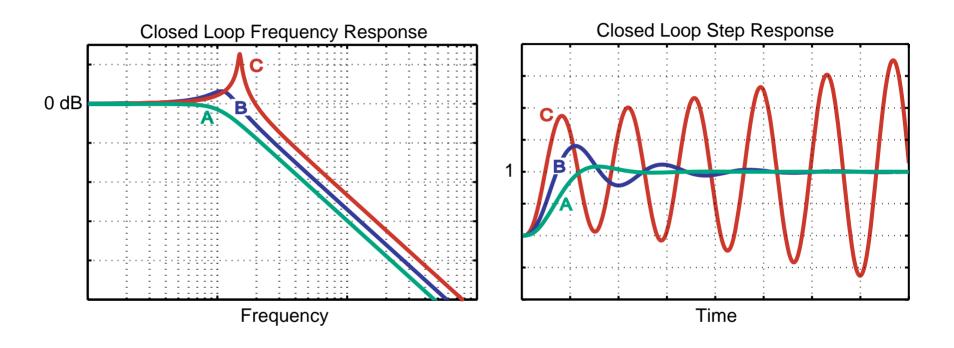
- Loop filter and VCO may have additional parasitic poles and zeros due to their circuit implementation
- We can model such parasitics by including them in the loop filter transfer function
- Example: add two parasitic poles to first order filter

$$\Rightarrow H(f) = \left(\frac{1}{1+jf/f_1}\right) \left(\frac{1}{1+jf/f_2}\right) \left(\frac{1}{1+jf/f_3}\right)$$

Closed Loop Poles Versus Open Loop Gain

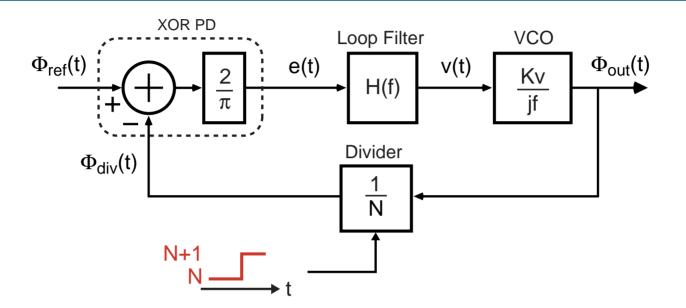


Corresponding Closed Loop Response



- Increase in open loop gain now eventually leads to instability
 - Large peaking in closed loop frequency response
 - Increasing amplitude in closed loop step response

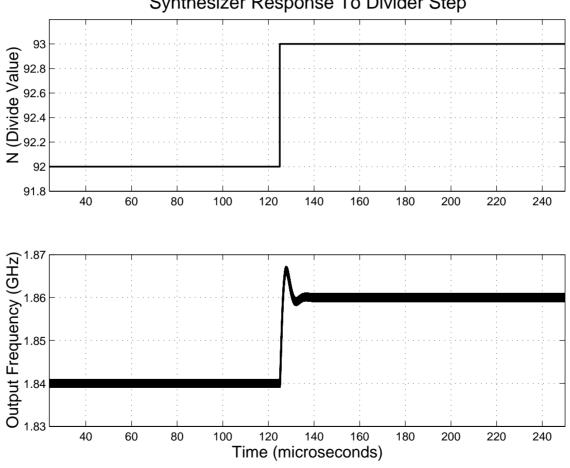
Response of PLL to Divide Value Changes



- Change in output frequency achieved by changing the divide value
- Classical approach provides no direct model of impact of divide value variations
 - Treat divide value variation as a perturbation to a linear system
 - PLL responds according to its closed loop response

Response of an Actual PLL to Divide Value Change

Example: Change divide value by one

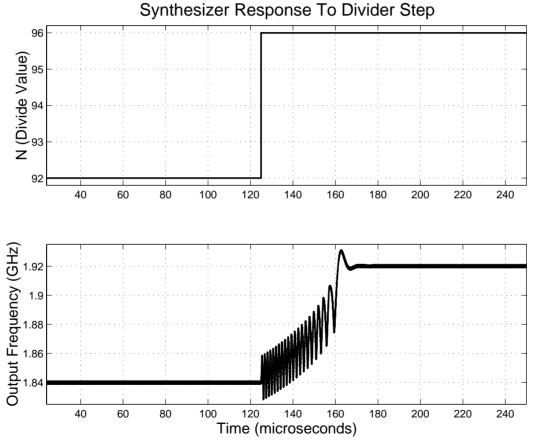


Synthesizer Response To Divider Step

PLL responds according to closed loop response!

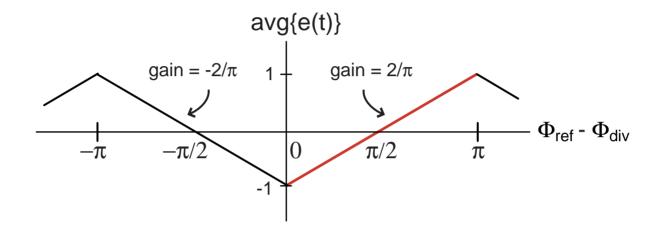
What Happens with Large Divide Value Variations?

PLL temporarily loses frequency lock (cycle slipping occurs)



Why does this happen?

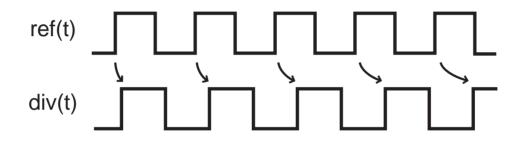
Recall Phase Detector Characteristic



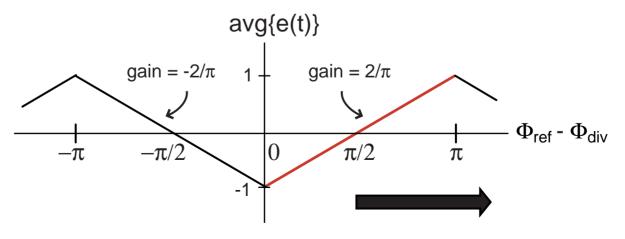
- To simplify modeling, we assumed that we always operated in a confined phase range (0 to π)
 - Led to a simple PD model
- Large perturbations knock us out of that confined phase range
 - PD behavior varies depending on the phase range it happens to be in

Cycle Slipping

- Consider the case where there is a frequency offset between divider output and reference
 - We know that phase difference will accumulate

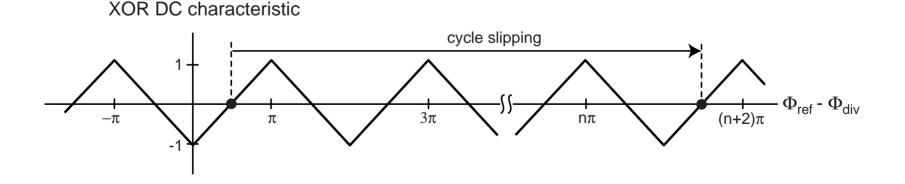


 Resulting ramp in phase causes PD characteristic to be swept across its different regions (cycle slipping)



Impact of Cycle Slipping

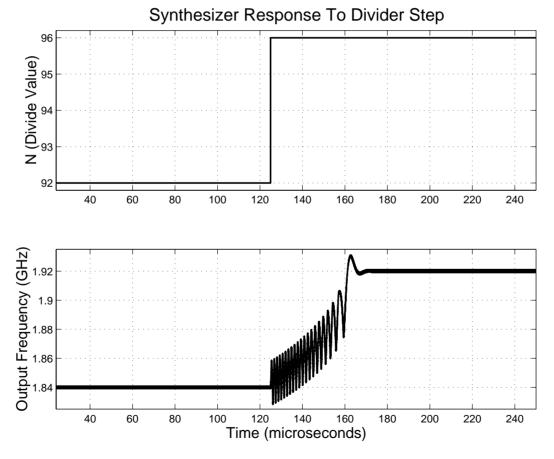
- Loop filter averages out phase detector output
- Severe cycle slipping causes phase detector to alternate between regions very quickly
 - Average value of XOR characteristic can be close to zero
 - PLL frequency oscillates according to cycle slipping
 - In severe cases, PLL will not re-lock
 - PLL has finite frequency lock-in range!



Back to PLL Response Shown Previously

PLL output frequency indeed oscillates

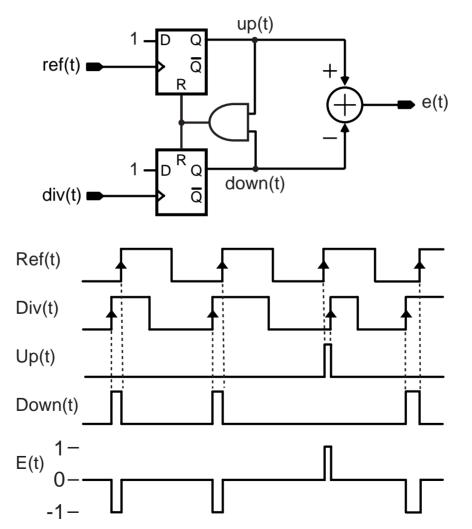
Eventually locks when frequency difference is small enough



How do we extend the frequency lock-in range?

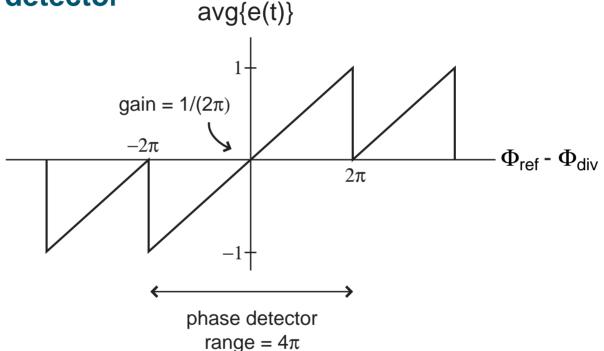
Phase Frequency Detectors (PFD)

Example: Tristate PFD



Tristate PFD Characteristic

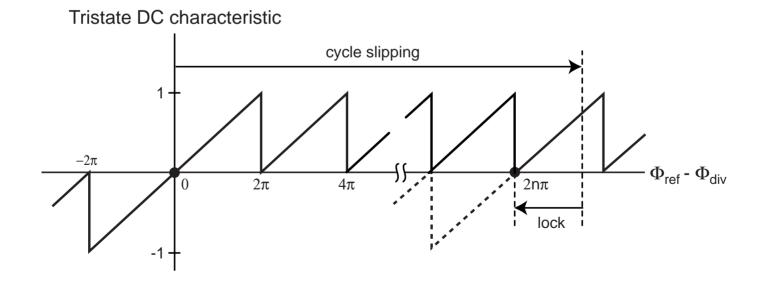
Calculate using similar approach as used for XOR phase detector



- Note that phase error characteristic is asymmetric about zero phase
 - Key attribute for enabling frequency detection

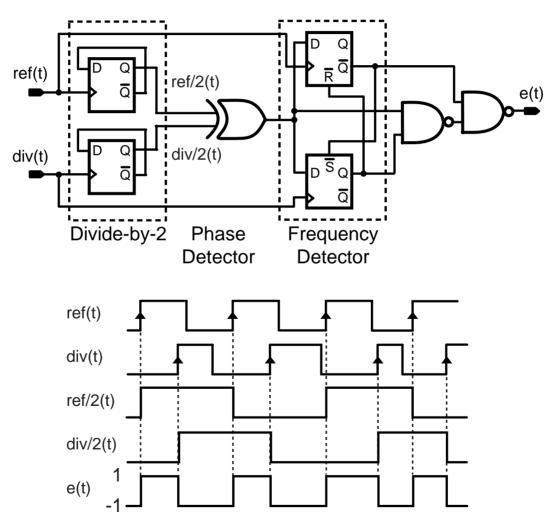
PFD Enables PLL to Always Regain Frequency Lock

- Asymmetric phase error characteristic allows positive frequency differences to be distinguished from negative frequency differences
 - Average value is now positive or negative according to sign of frequency offset
 - PLL will always relock



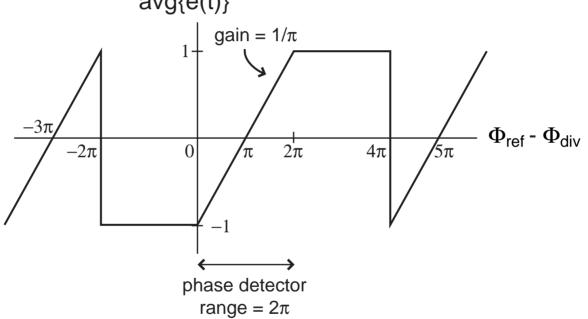
Another PFD Structure

XOR-based PFD



XOR-based PFD Characteristic

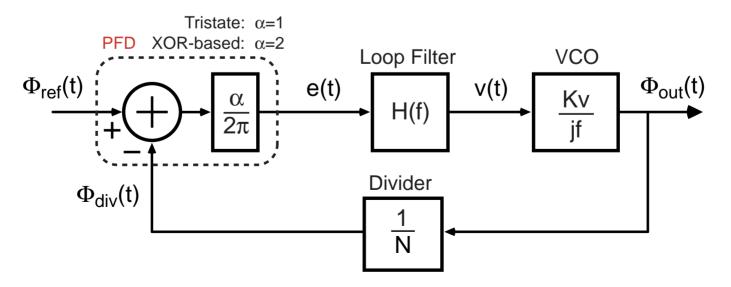
Calculate using similar approach as used for XOR phase detector avg{e(t)}



- Phase error characteristic asymmetric about zero phase
 - Average value of phase error is positive or negative during cycle slipping depending on sign of frequency error

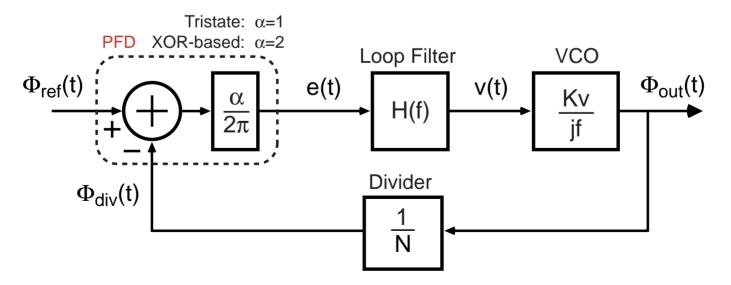
Linearized PLL Model With PFD Structures

- Assume that when PLL in lock, phase variations are within the linear range of PFD
 - Simulate impact of cycle slipping if desired (do not include its effect in model)
- Same frequency-domain PLL model as before, but PFD gain depends on topology used



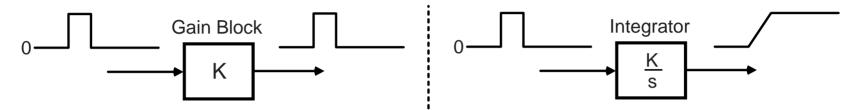
Type I versus Type II PLL Implementations

- Type I: one integrator in PLL open loop transfer function
 - VCO adds on integrator
 - Loop filter, H(f), has no integrators
- Type II: two integrators in PLL open loop transfer function
 - Loop filter, H(f), has one integrator

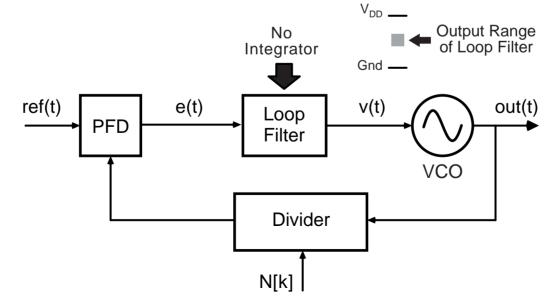


VCO Input Range Issue for Type I PLL Implementations

DC output range of gain block versus integrator

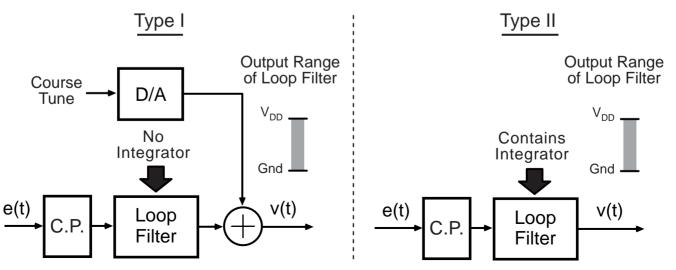


- Issue: DC gain of loop filter often small and PFD output range is limited
 - Loop filter output fails to cover full input range of VCO



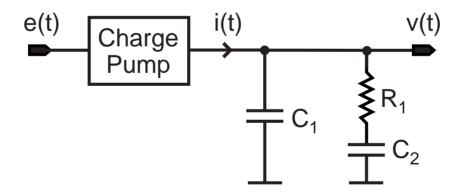
Options for Achieving Full Range Span of VCO

- Type I
 - Add a D/A converter to provide coarse tuning
 - Adds power and complexity
 - Steady-state phase error inconsistently set
- Type II
 - Integrator automatically provides DC level shifting
 - Low power and simple implementation
 - Steady-state phase error always set to zero



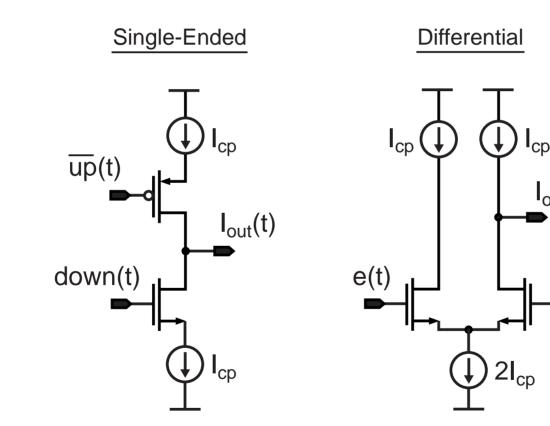
A Common Loop Filter for Type II PLL Implementation

- Use a charge pump to create the integrator
 - Current onto a capacitor forms integrator
 - Add extra pole/zero using resistor and capacitor
- Gain of loop filter can be adjusted according to the value of the charge pump current
- Example: lead/lag network



Charge Pump Implementations

Switch currents in and out:



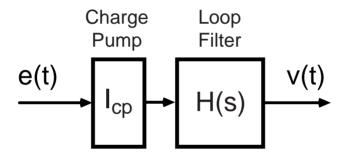
M.H. Perrott

I_{out}(t)

e(t)

Modeling of Loop Filter/Charge Pump

- Charge pump is gain element
- Loop filter forms transfer function

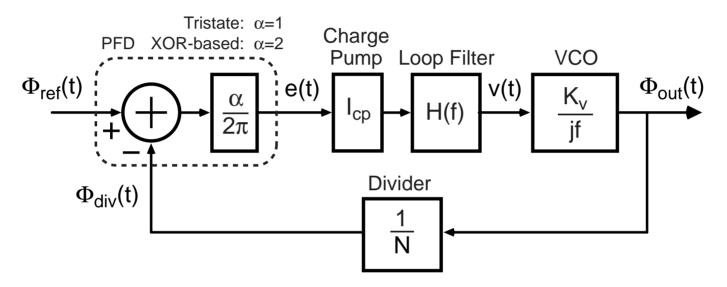


Example: lead/lag network from previous slide

$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p}$$

$$C_{sum} = C_1 + C_2, \quad f_z = \frac{1}{2\pi R_1 C_2}, \quad f_p = \frac{C_1 + C_2}{2\pi R_1 C_1 C_2}$$

Overall PLL block diagram



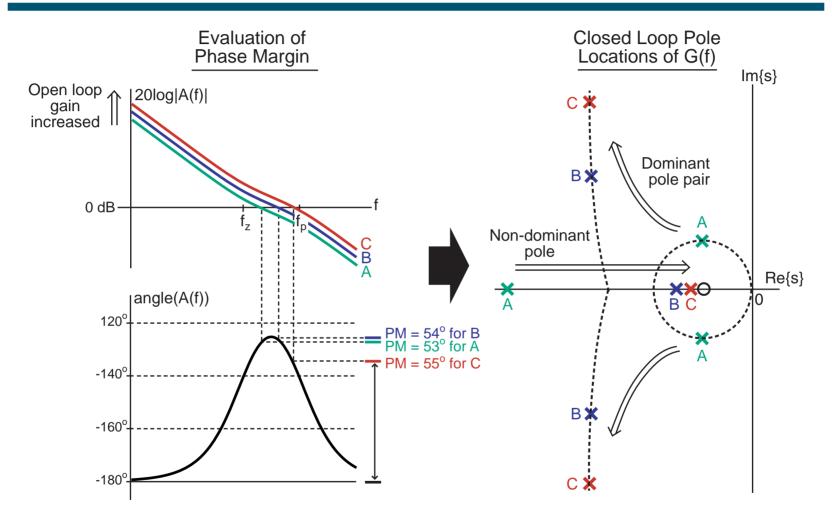
Loop filter

$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p}$$

Set open loop gain to achieve adequate phase margin

Set f_z lower than and f_p higher than desired PLL bandwidth

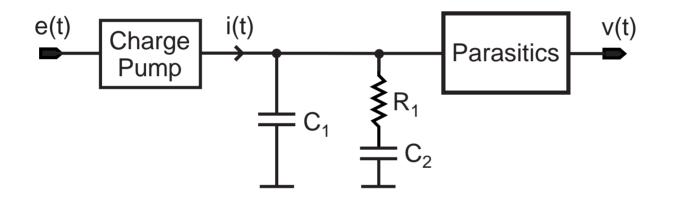
Closed Loop Poles Versus Open Loop Gain



Open loop gain cannot be too low or too high if reasonable phase margin is desired

Impact of Parasitics When Lead/Lag Filter Used

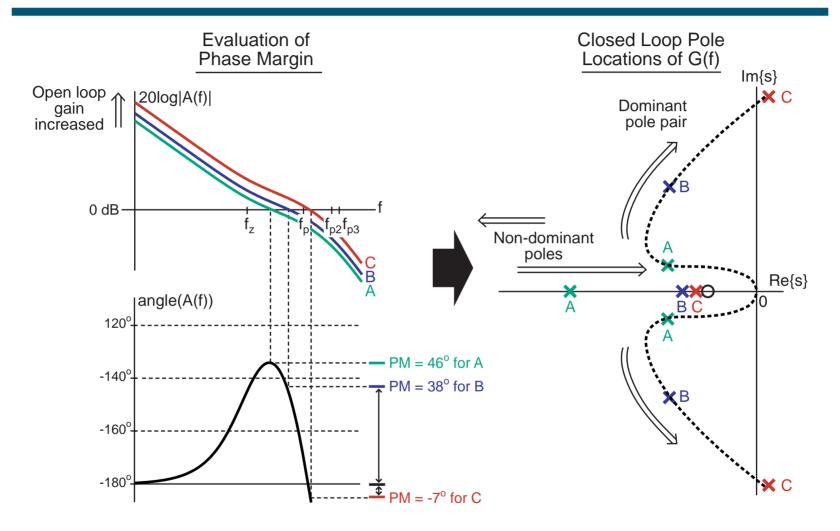
We can again model impact of parasitics by including them in loop filter transfer function



Example: include two parasitic poles with the lead/lag transfer function

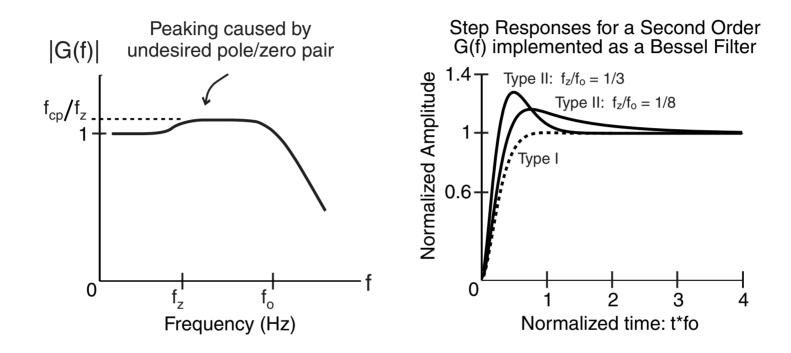
$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p} \left(\frac{1}{1 + jf/f_{p2}}\right) \left(\frac{1}{1 + jf/f_{p3}}\right)$$

Closed Loop Poles Versus Open Loop Gain



Closed loop response becomes unstable if open loop gain is too high

Negative Issues For Type II PLL Implementations



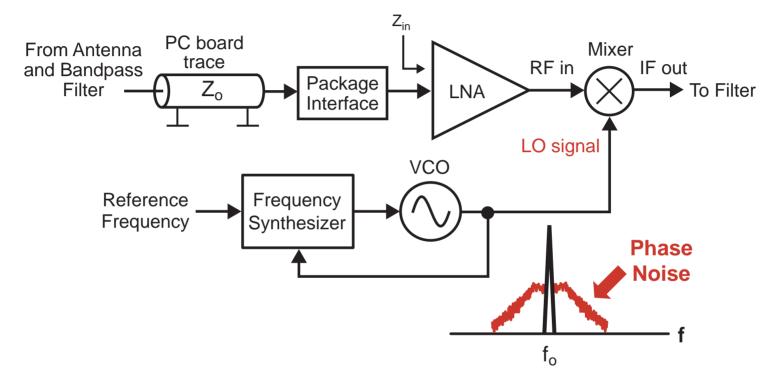
Parasitic pole/zero pair causes

- Peaking in the closed loop frequency response
- Extended settling time due to parasitic "tail" response
 - Bad for wireless systems demanding fast settling time

Summary of Integer-N Dynamic Modeling

- Linearized models can be derived for each PLL block
 - Resulting transfer function model of PLL is accurate for small perturbations in PLL
 - Linear PLL model breaks down for large perturbations on PLL, such as a large step change in frequency
 - Cycle slipping is key nonlinear effect
- Key issues for designing PLL are
 - Achieve stable operation with desired bandwidth
 - Allow full range of VCO with a simple implementation
 - Type II PLL is very popular to achieve this

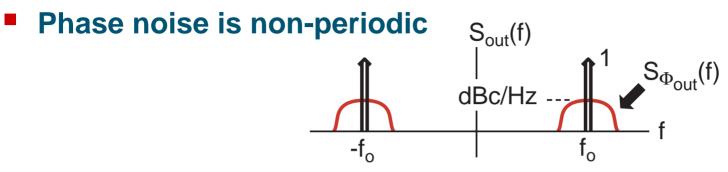
Frequency Synthesizer Noise in Wireless Systems



Synthesizer noise has a negative impact on system

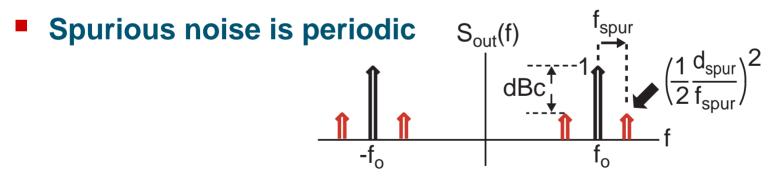
- Receiver lower sensitivity, poorer blocking performance
- Transmitter increased spectral emissions (output spectrum must meet a mask requirement)
- Noise is characterized in frequency domain

Phase Noise Versus Spurious Noise



Described as a spectral density relative to carrier power

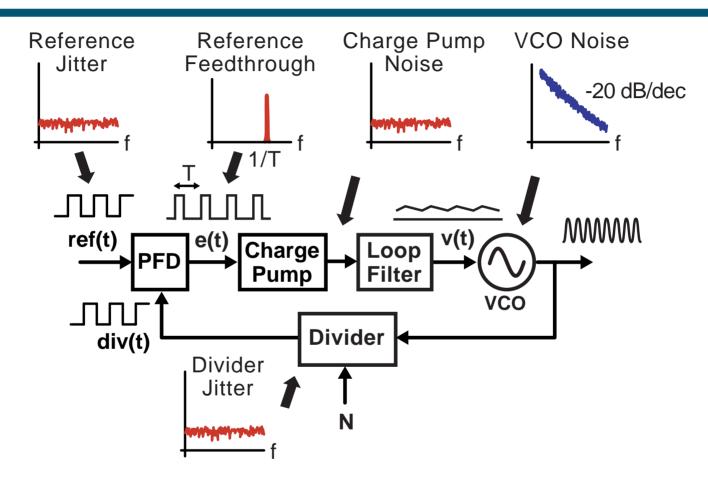
$$L(f) = 10 \log(S_{\Phi_{out}}(f)) dBc/Hz$$



Described as tone power relative to carrier power

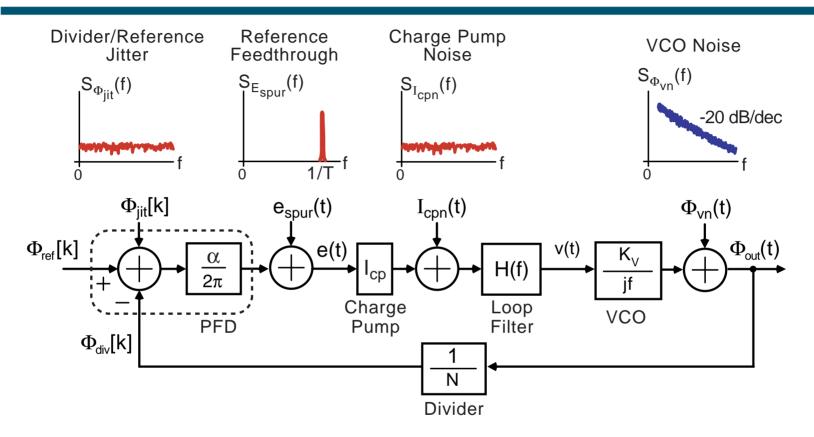
$$20\log\left(rac{d_{spur}}{2f_{spur}}
ight)~ ext{dBc}$$

Sources of Noise in Frequency Synthesizers



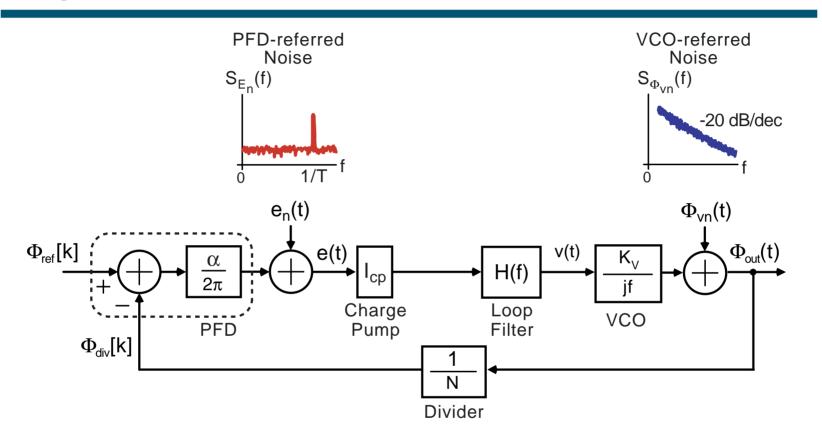
- Extrinsic noise sources to VCO
 - Reference/divider jitter and reference feedthrough
 - Charge pump noise

Modeling the Impact of Noise on Output Phase of PLL



- Determine impact on output phase by deriving transfer function from each noise source to PLL output phase
 - There are a lot of transfer functions to keep track of!

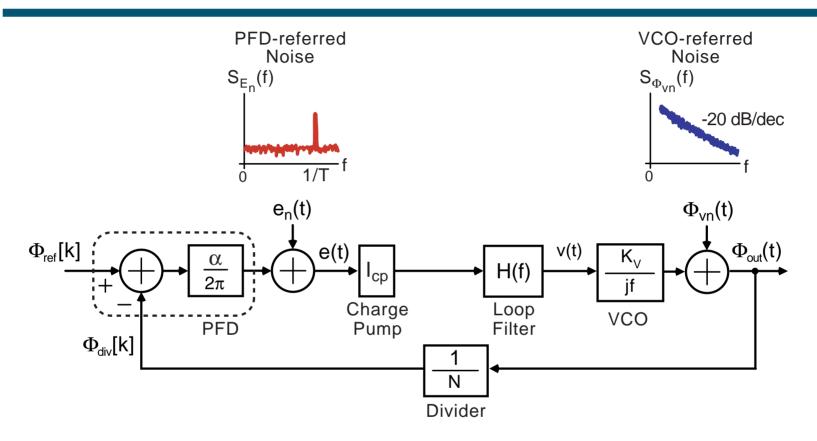
Simplified Noise Model



Refer all PLL noise sources (other than the VCO) to the PFD output

PFD-referred noise corresponds to the sum of these noise sources referred to the PFD output

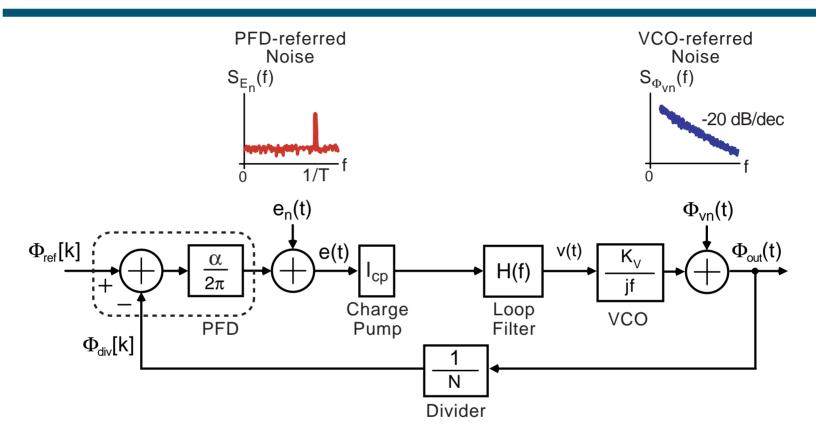
Impact of PFD-referred Noise on Synthesizer Output



Transfer function derived using Black's formula

$$\frac{\Phi_{out}}{e_n} = \frac{I_{cp}H(f)K_v/(jf)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$

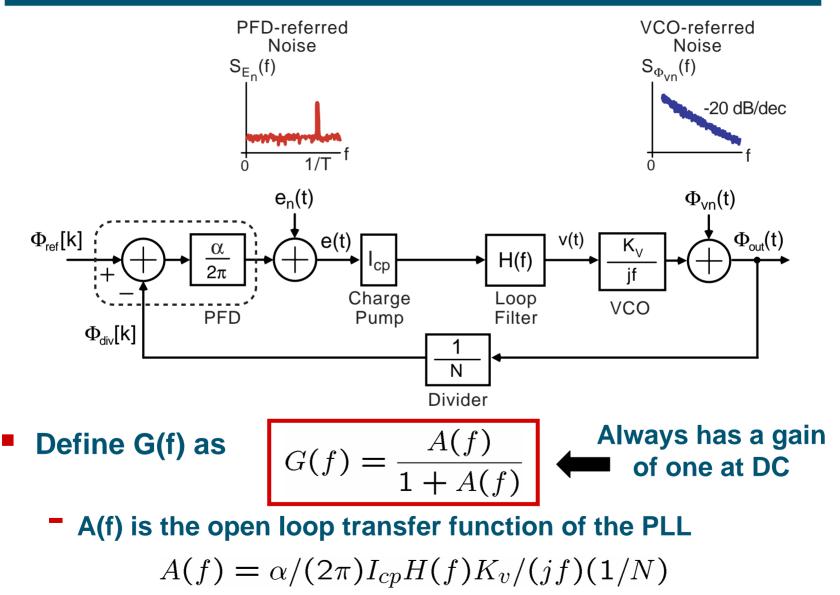
Impact of VCO-referred Noise on Synthesizer Output



Transfer function again derived from Black's formula

$$\frac{\Phi_{out}}{\Phi_{vn}} = \frac{1}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$

A Simpler Parameterization for PLL Transfer Functions



Parameterize Noise Transfer Functions in Terms of G(f)

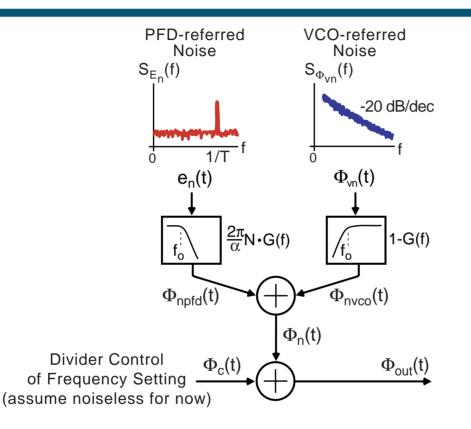
PFD-referred noise

$$\frac{\Phi_{out}}{e_n} = \frac{I_{cp}H(f)K_v/(jf)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{2\pi}{\alpha}N\frac{\alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{2\pi}{\alpha}N\frac{A(f)}{1 + A(f)} = \frac{2\pi}{\alpha}NG(f)$$

VCO-referred noise

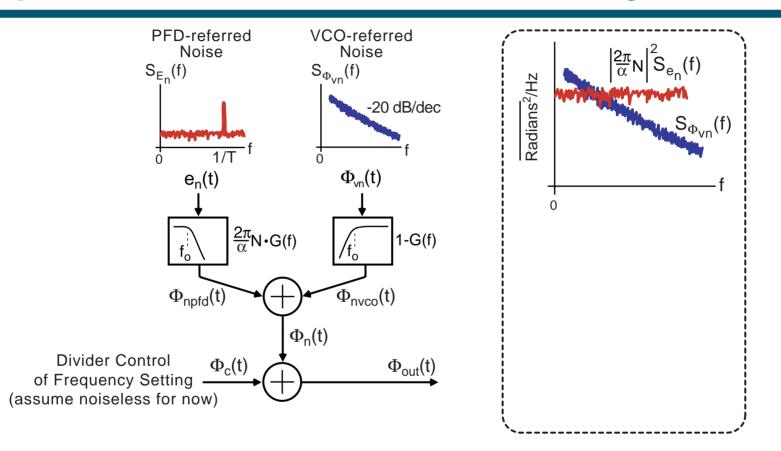
$$\frac{\Phi_{out}}{\Phi_{vn}} = \frac{1}{1 + \alpha/(2\pi)I_{cp}H(f)K_v/(jf)(1/N)}$$
$$= \frac{1}{1 + A(f)} = 1 - \frac{A(f)}{1 + A(f)} = 1 - G(f)$$

Parameterized PLL Noise Model



- PFD-referred noise is lowpass filtered
- VCO-referred noise is highpass filtered
- Both filters have the same transition frequency values
 - Defined as f_o

Impact of PLL Parameters on Noise Scaling

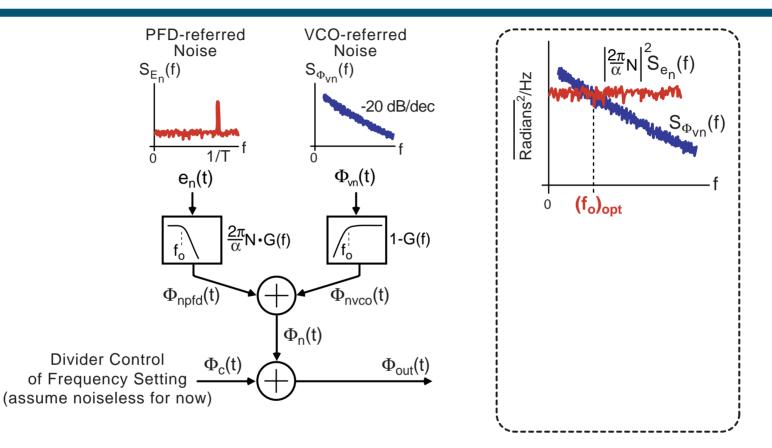


PFD-referred noise is scaled by square of divide value and inverse of PFD gain

High divide values lead to large multiplication of this noise

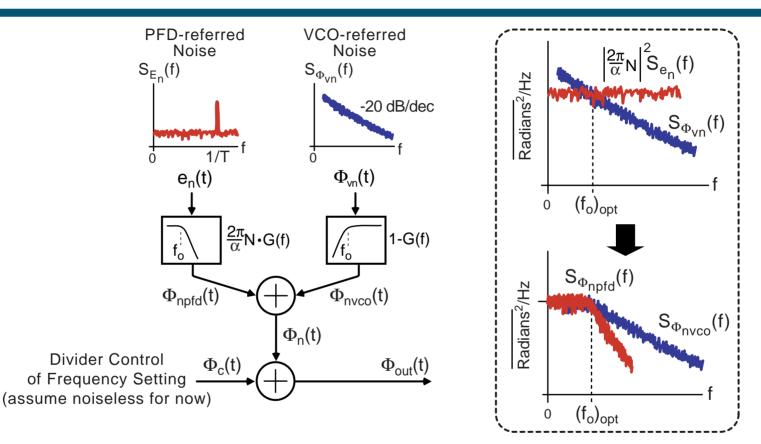
VCO-referred noise is not scaled (only filtered) M.H. Perrott

Optimal Bandwidth Setting for Minimum Noise



- Optimal bandwidth is where scaled noise sources meet
 - Higher bandwidth will pass more PFD-referred noise
 - Lower bandwidth will pass more VCO-referred noise

Resulting Output Noise with Optimal Bandwidth



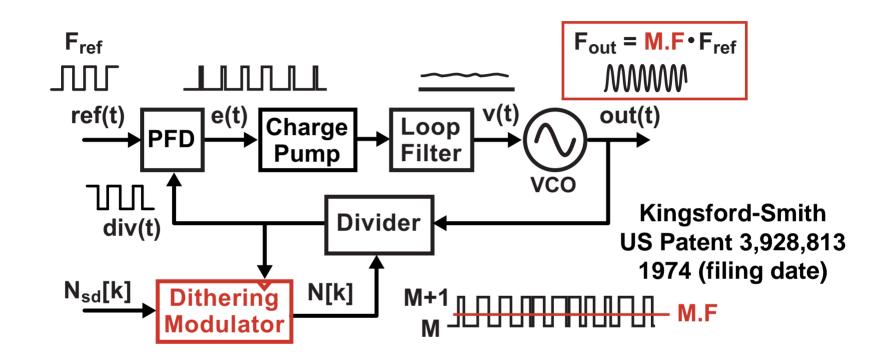
- PFD-referred noise dominates at low frequencies
 - Corresponds to close-in phase noise of synthesizer
- VCO-referred noise dominates at high frequencies

Corresponds to far-away phase noise of synthesizer

Summary of Noise Analysis of Integer-N Synthesizers

- Key PLL noise sources are
 - VCO noise
 - PFD-referred noise
 - Charge pump noise, reference noise, etc.
- Setting of PLL bandwidth has strong impact on noise
 - High PLL bandwidth suppresses VCO noise
 - Low PLL bandwidth suppresses PFD-referred noise

Fractional-N Frequency Synthesis



Divide value is dithered between integer values

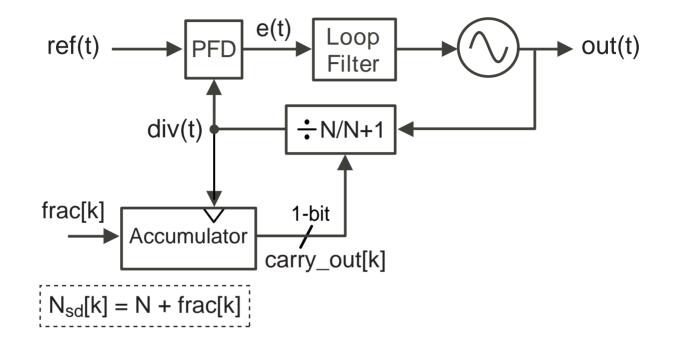
Fractional divide values can be realized!

Very high frequency resolution

Outline of Fractional-N Synthesizers

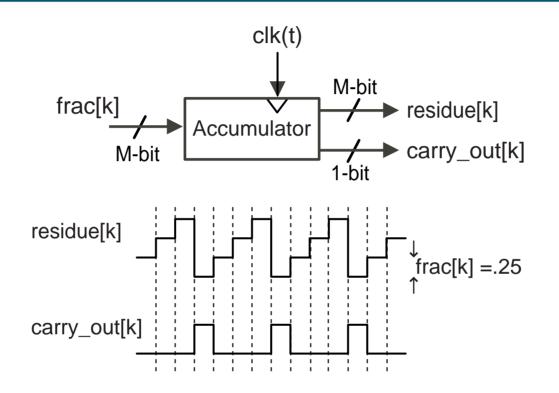
- Traditional Approach
- Sigma-Delta Concepts
- Synthesizer Noise Analysis

Classical Fractional-N Synthesizer Architecture



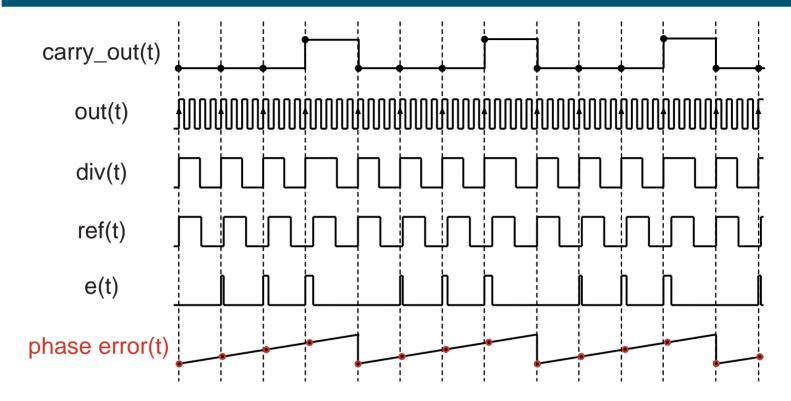
- Use an accumulator to perform dithering operation
 - Fractional input value fed into accumulator
 - Carry out bit of accumulator fed into divider

Accumulator Operation



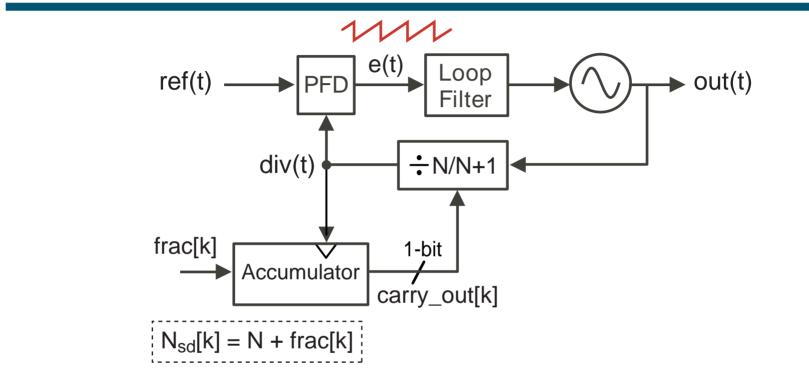
- Carry out bit is asserted when accumulator residue reaches or surpasses its full scale value
 - Accumulator residue increments by input fractional value each clock cycle

Fractional-N Synthesizer Signals with N = 4.25



- Divide value set at N = 4 most of the time
 - Resulting frequency offset causes phase error to accumulate
 - Reset phase error by "swallowing" a VCO cycle
 - Achieved by dividing by 5 every 4 reference cycles

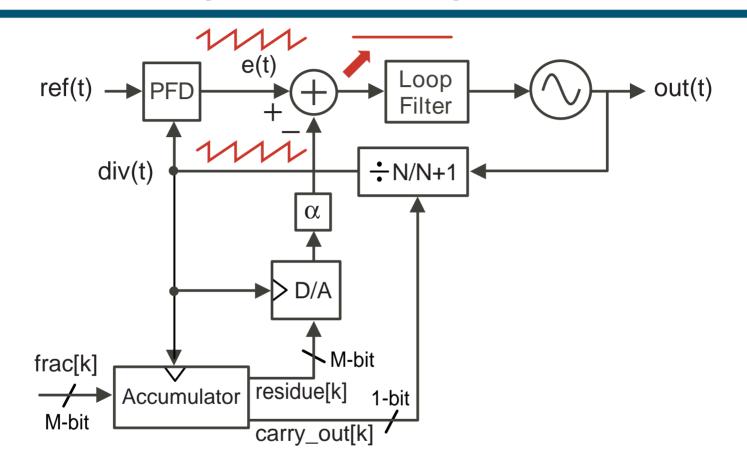
The Issue of Spurious Tones



PFD error is periodic

- Note that actual PFD waveform is series of pulses the sawtooth waveform represents pulse width values over time
- Periodic error signal creates spurious tones in synthesizer output
 - Ruins noise performance of synthesizer

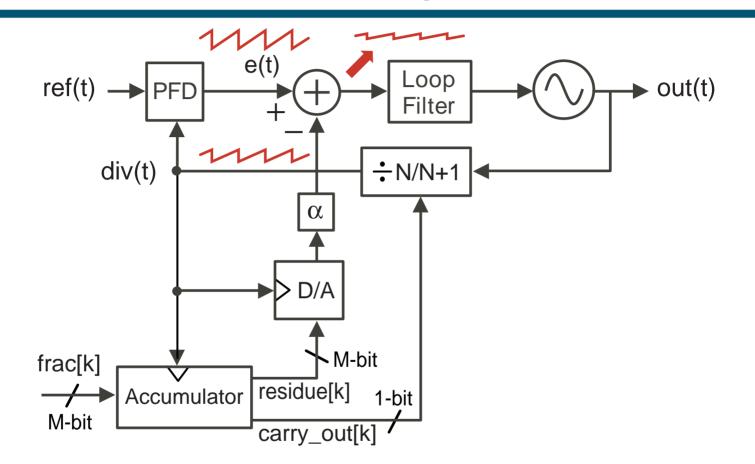
The Phase Interpolation Technique



Phase error due to fractional technique is predicted by the instantaneous residue of the accumulator

Cancel out phase error based on accumulator residue

The Problem With Phase Interpolation

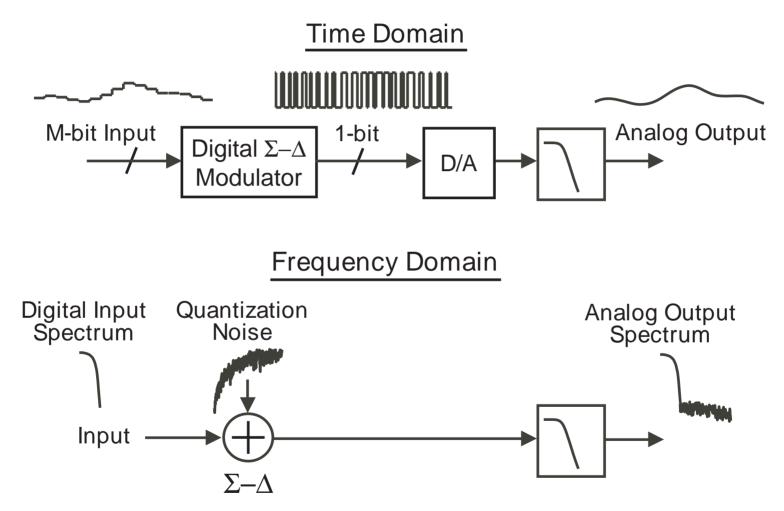


Gain matching between PFD error and scaled D/A output must be extremely precise

Any mismatch will lead to spurious tones at PLL output

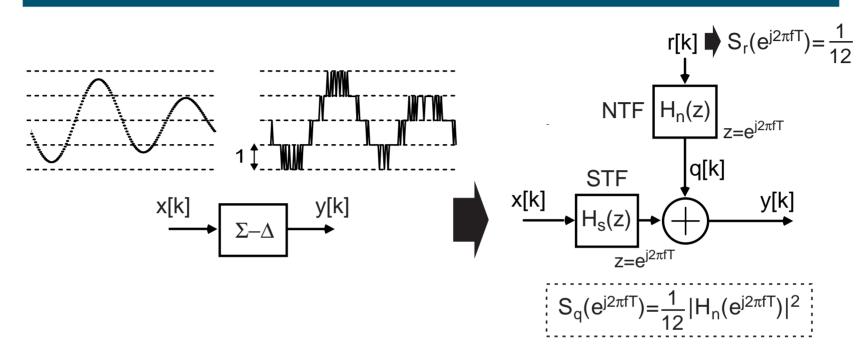
Is There a Better Way?

A Better Dithering Method: Sigma-Delta Modulation



Sigma-Delta dithers in a manner such that resulting quantization noise is "shaped" to high frequencies

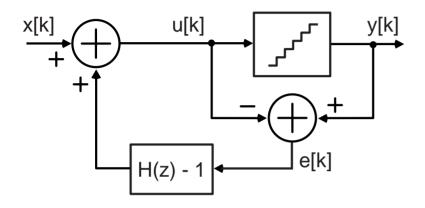
Linearized Model of Sigma-Delta Modulator



Composed of two transfer functions relating input and noise to output

- Signal transfer function (STF)
 - Filters input (generally undesirable)
- Noise transfer function (NTF)
 - Filters (i.e., shapes) noise that is assumed to be white

Example: Cutler Sigma-Delta Topology

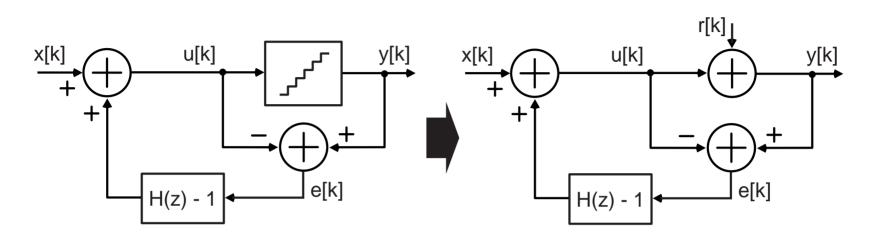


- Output is quantized in a multi-level fashion
- Error signal, e[k], represents the quantization error
- Filtered version of quantization error is fed back to input
 - H(z) is typically a highpass filter whose first tap value is 1

• i.e., $H(z) = 1 + a_1 z^{-1} + a_2 z^{-2} \cdots$

- H(z) 1 therefore has a first tap value of 0
 - Feedback needs to have delay to be realizable

Linearized Model of Cutler Topology



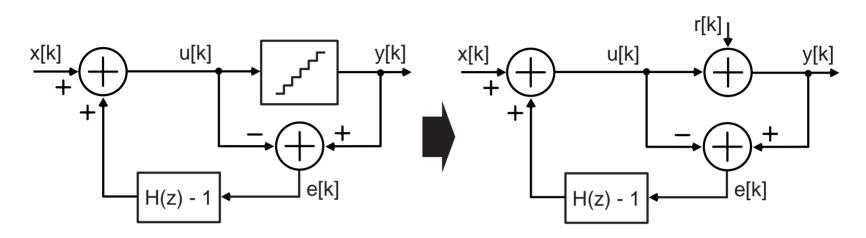
Represent quantizer block as a summing junction in which r[k] represents quantization error

Note:

$$e[k] = y[k] - u[k] = (u[k] + r[k]) - u[k] = r[k]$$

- It is assumed that r[k] has statistics similar to white noise
 - This is a key assumption for modeling often not true!

Calculation of Signal and Noise Transfer Functions



Calculate using Z-transform of signals in linearized model Y(z) = U(z) + R(z)

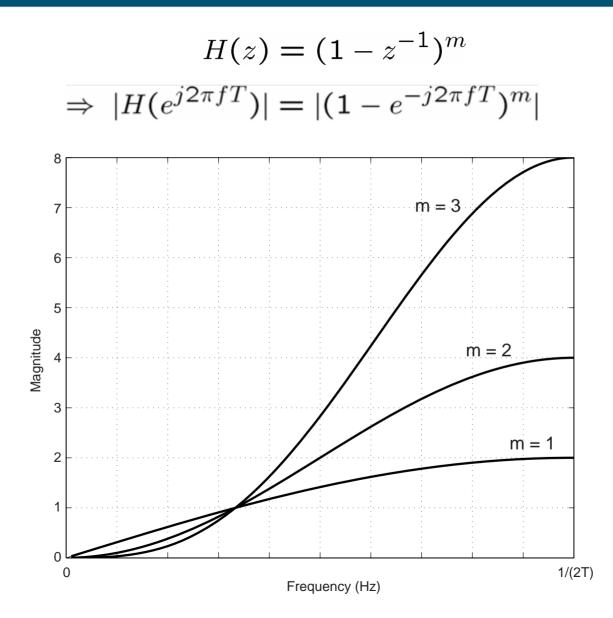
$$= X(z) + (H(z) - 1)E(z) + R(z)$$

$$= X(z) + (H(z) - 1)R(z) + R(z)$$

$$= X(z) + H(z)R(z)$$

- **•** NTF: $H_n(z) = H(z)$
 - STF: H_s(z) = 1

A Common Choice for H(z)

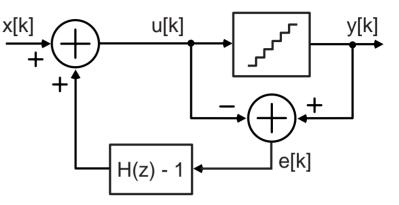


M.H. Perrott

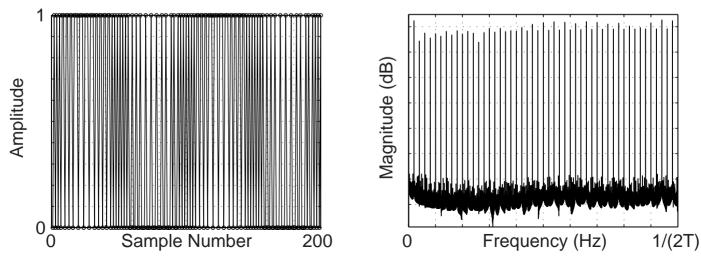
81

Example: First Order Sigma-Delta Modulator

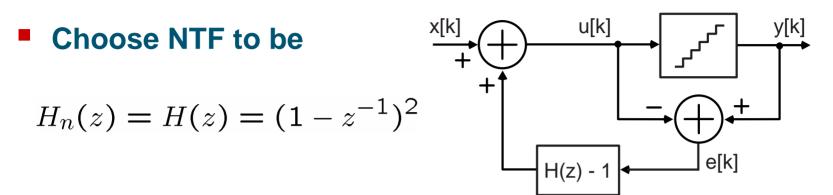
• Choose NTF to be $H_n(z) = H(z) = 1 - z^{-1}$



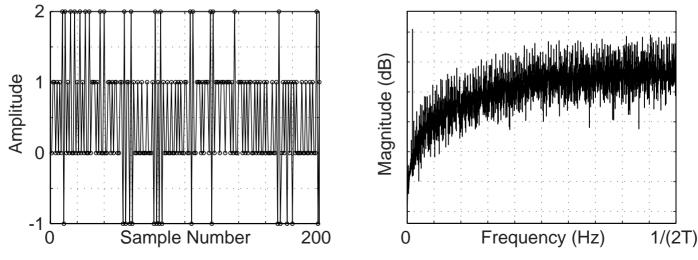
Plot of output in time and frequency domains with input of $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$



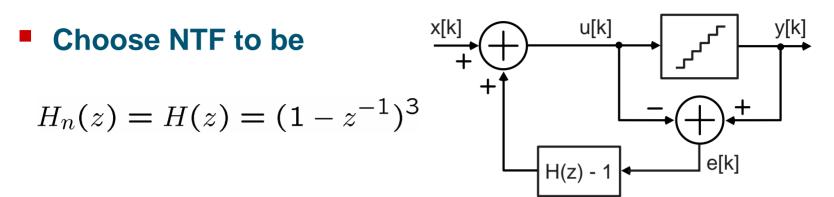
Example: Second Order Sigma-Delta Modulator



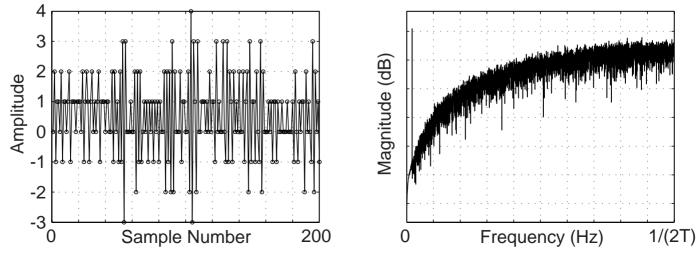
Plot of output in time and frequency domains with input of $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$



Example: Third Order Sigma-Delta Modulator



Plot of output in time and frequency domains with input of $x[k] = 0.5 + 0.25 \sin\left(\frac{2\pi}{100}k\right)$

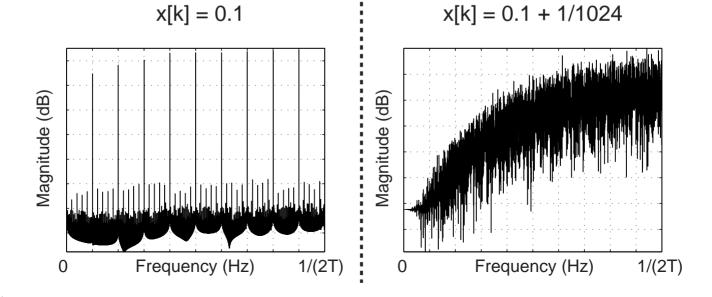


Observations

- Low order Sigma-Delta modulators do not appear to produce "shaped" noise very well
 - Reason: low order feedback does not properly "scramble" relationship between input and quantization noise
 - Quantization noise, r[k], fails to be white
- Higher order Sigma-Delta modulators provide much better noise shaping with fewer spurs
 - Reason: higher order feedback filter provides a much more complex interaction between input and quantization noise

Warning: Higher Order Modulators May Still Have Tones

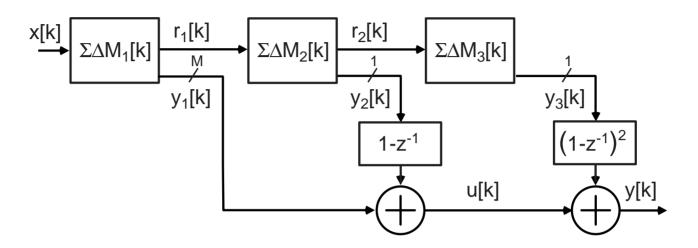
- Quantization noise, r[k], is best whitened when a "sufficiently exciting" input is applied to the modulator
 - Varying input and high order helps to "scramble" interaction between input and quantization noise
- Worst input for tone generation are DC signals that are rational with a low valued denominator
 - Examples (third order modulator with no dithering):



Fractional Spurs Can Be Theoretically Eliminated

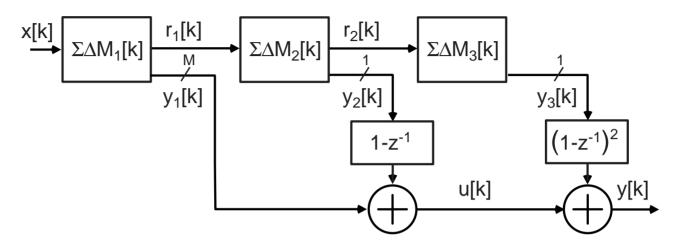
- See:
 - M. Kozak, I. Kale, "Rigorous Analysis of Delta-Sigma Modulators for Fractional-N PLL Frequency Synthesis", *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, vol. 51, no. 6, pp. 1148-1162, June 2004.
 - S. Pamarti, I. Galton, "LSB Dithering in MASH Delta– Sigma D/A Converters", *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 54, no. 4, pp. 779 – 790, April 2007.

MASH topology



- Cascade first order sections
- Combine their outputs after they have passed through digital differentiators
- Advantage over single loop approach
 - Allows pipelining to be applied to implementation
 - High speed or low power applications benefit

Calculation of STF and NTF for MASH topology (Step 1)



Individual output signals of each first order modulator

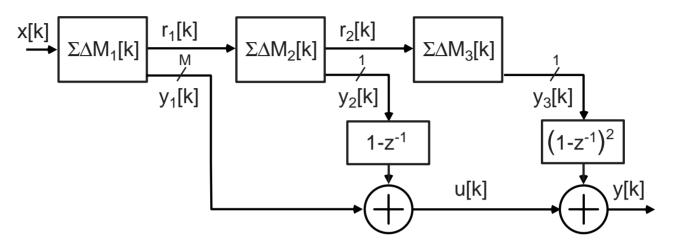
$$y_1(z) = x(z) - (1 - z^{-1})r_1(z)$$

$$y_2(z) = r_1(z) - (1 - z^{-1})r_2(z)$$

$$y_3(z) = r_2(z) - (1 - z^{-1})r_3(z)$$

$$\begin{array}{r} y_1(z) \\ + & (1-z^{-1})y_2(z) \\ + & (1-z^{-1})^2y_2(z) \\ \hline = & x(z) - (1-z^{-1})^3r_3(z) \end{array}$$

Calculation of STF and NTF for MASH topology (Step 1)

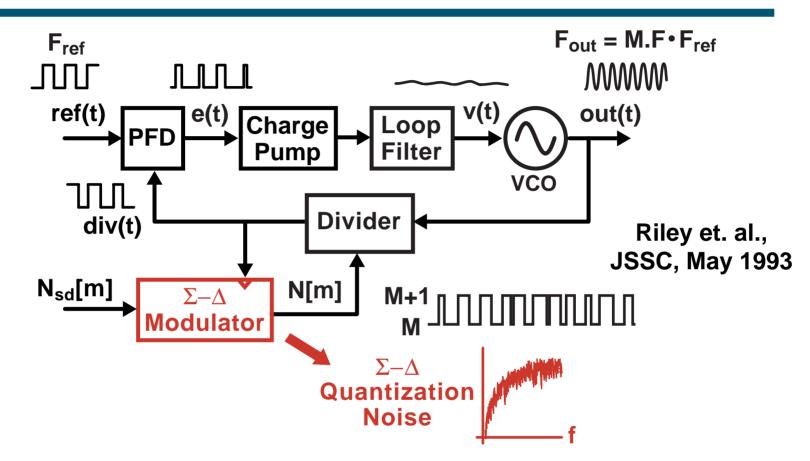


Overall modulator behavior

$$y(z) = x(z) - (1 - z^{-1})^3 r_3(z)$$

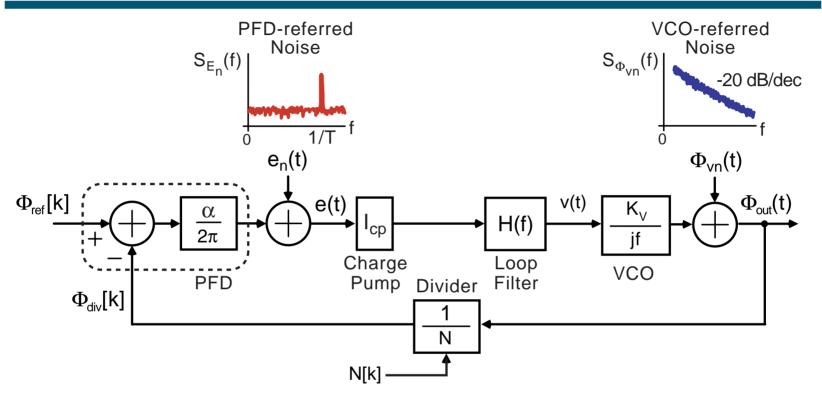
• NTF:
$$H_n(z) = (1 - z^{-1})^3$$

Sigma-Delta Frequency Synthesizers



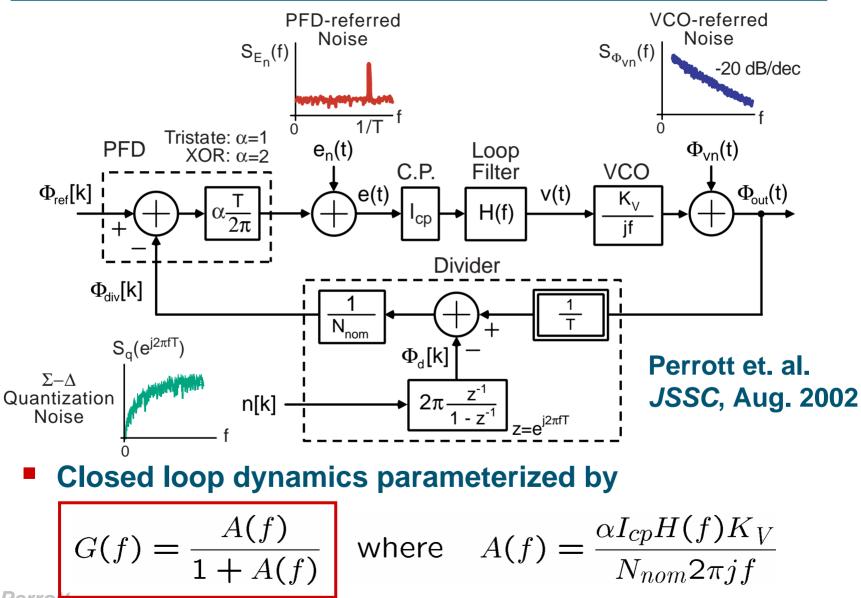
- Use Sigma-Delta modulator rather than accumulator to perform dithering operation
 - Achieves much better spurious performance than classical fractional-N approach

The Need for A Better PLL Model

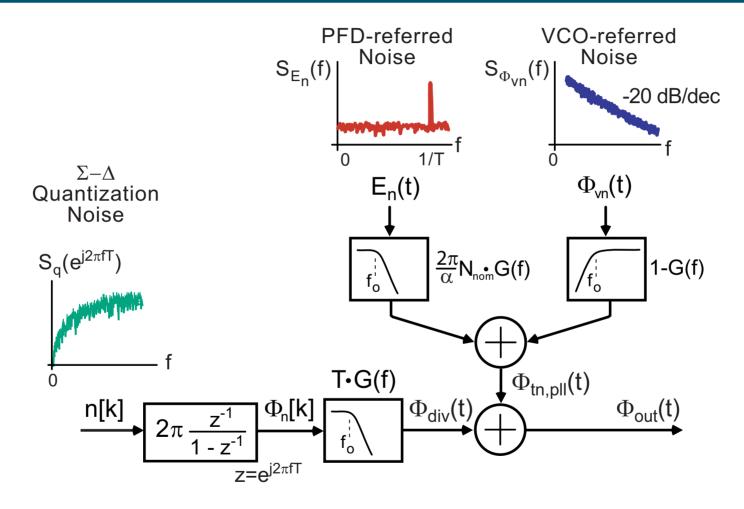


- Classical PLL model
 - Predicts impact of PFD and VCO referred noise sources
 - Does not allow straightforward modeling of impact due to divide value variations
 - This is a problem when using fractional-N approach

Fractional-N PLL Model

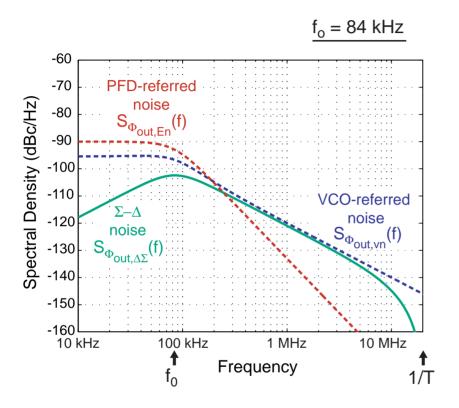


Parameterized PLL Noise Model



Design revolves around choice of Σ-Δ and G(f)
 We will focus on G(f) design here

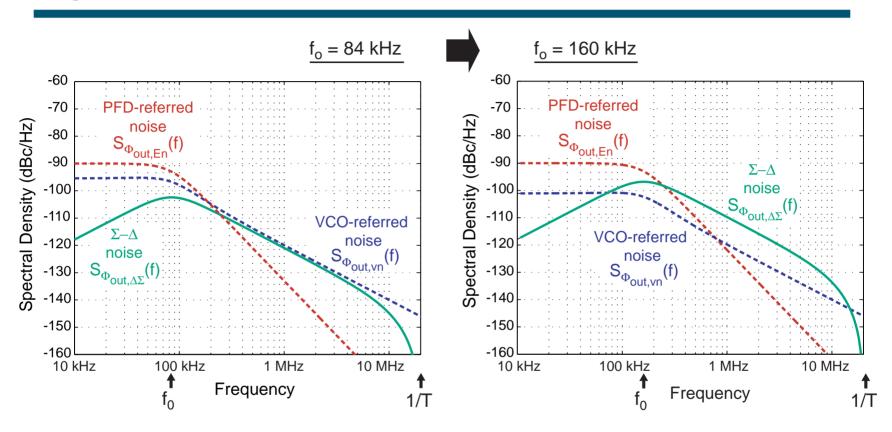
A Well Designed Sigma-Delta Synthesizer



Order of G(f) is set to equal to the Sigma-Delta order

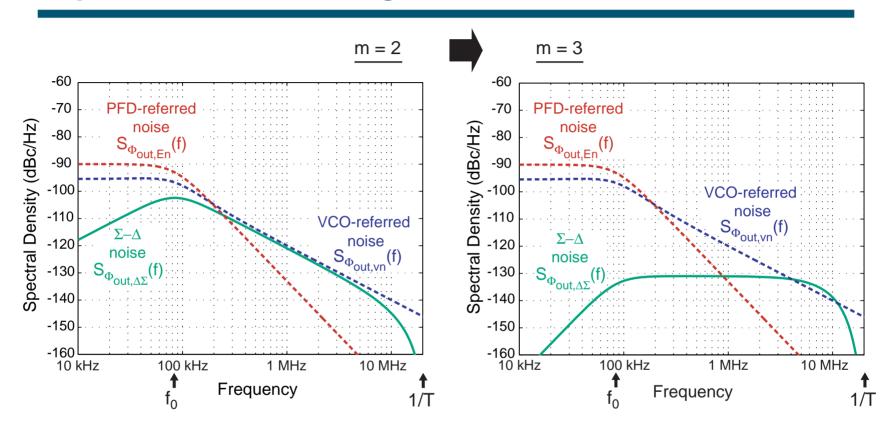
- Sigma-Delta noise falls at -20 dB/dec above G(f) bandwidth
- Bandwidth of G(f) is set low enough such that synthesizer noise is dominated by intrinsic PFD and VCO noise

Impact of Increased PLL Bandwidth



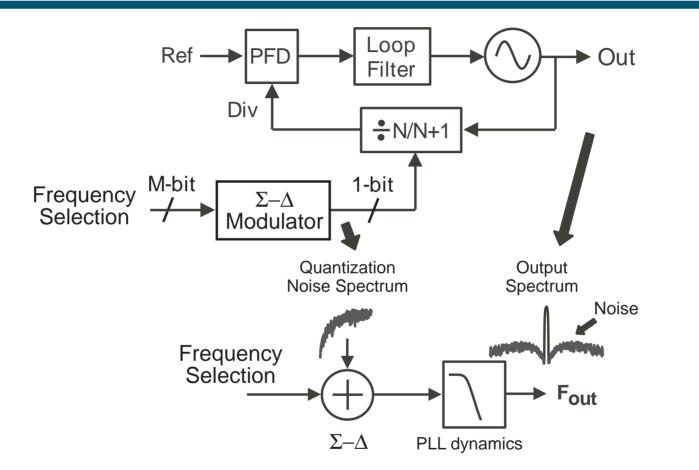
- Allows more PFD noise to pass through
- Allows more Sigma-Delta noise to pass through
- Increases suppression of VCO noise

Impact of Increased Sigma-Delta Order



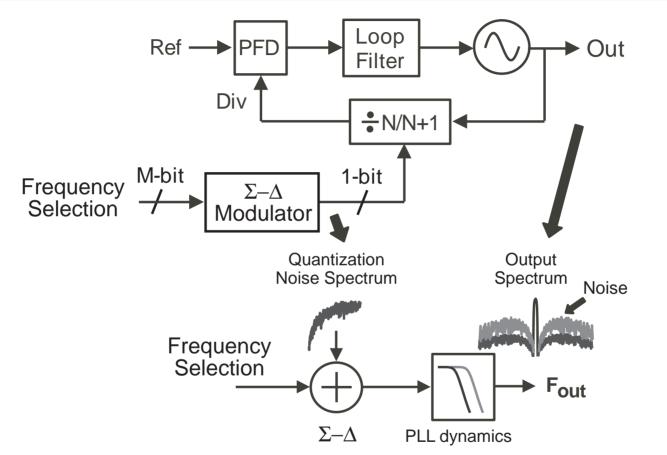
- PFD and VCO noise unaffected
- Sigma-Delta noise no longer attenuated by G(f) such that a -20 dB/dec slope is achieved above its bandwidth

Impact of *S*-*A* Quantization Noise on Synth. Output



Lowpass action of PLL dynamics suppresses the shaped Σ-Δ quantization noise

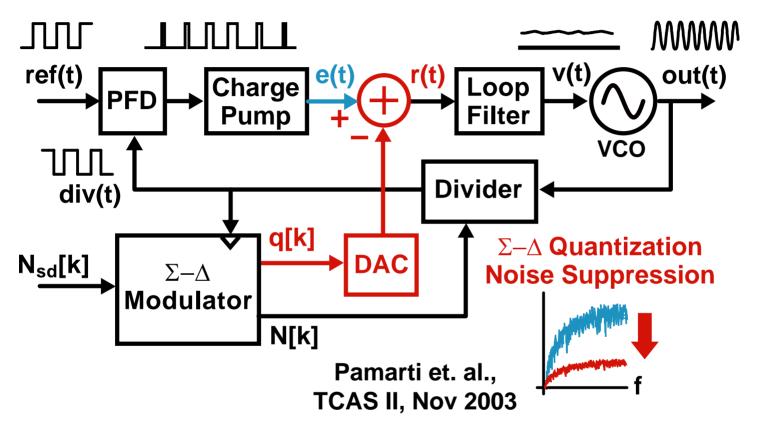
Impact of Increasing the PLL Bandwidth



Higher PLL bandwidth leads to less quantization noise suppression

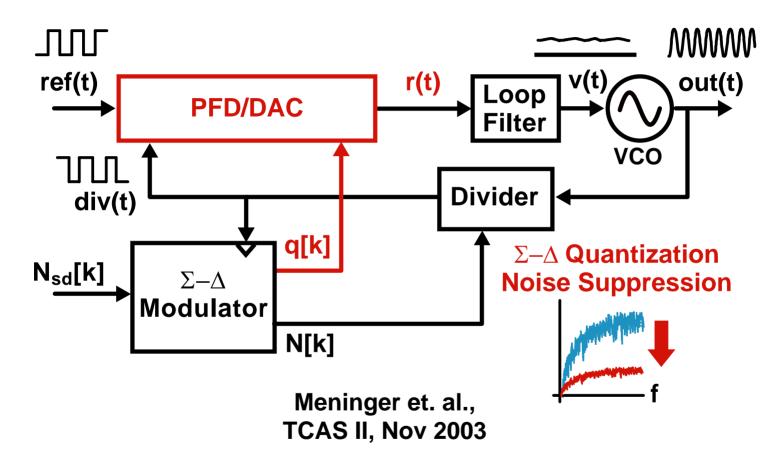
Tradeoff: Noise performance vs PLL bandwidth

A Cancellation Method for Reducing Quantization Noise



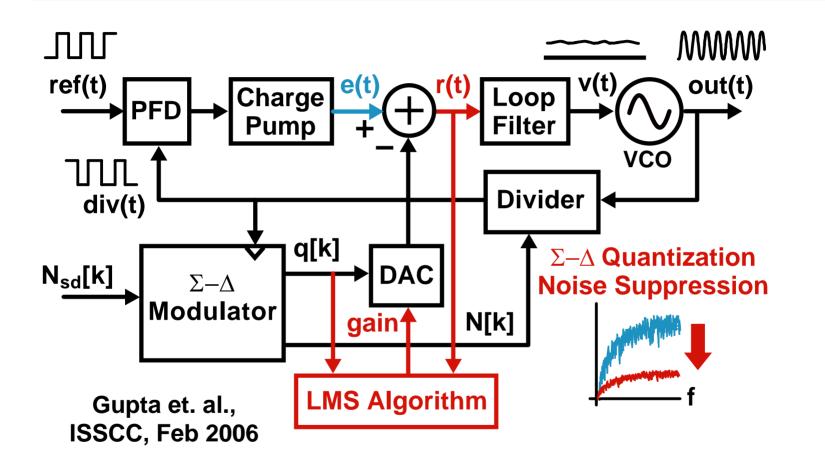
- Key idea: quantization noise can be predicted within the digital $\Sigma \Delta$ modulator structure
- Issue: cancellation is limited by analog matching
 - Achieves < 20 dB cancellation in practice</p>

Improved Cancellation Through Inherent Matching



- Combined PFD/DAC structure achieves inherent matching between error and cancellation signal
 - > 29 dB quantization noise cancellation achieved

Improved Cancellation Through Continuous Calibration



- Gain of DAC is adjusted in an adaptive manner using LMS algorithm
 - > 30 dB noise cancellation achieved

Summary of Fractional-N Frequency Synthesizers

- Fractional-N synthesizers allow very high resolution to be achieved with relatively high reference frequencies
 - Cost is introduction of quantization noise due to dithering of divider
- Classical fractional-N synthesizers used an accumulator for dithering
 - Quantization noise cancellation was attempted
- Sigma-Delta fractional-N synthesizers improve quantization noise by utilizing noise shaping techniques
 - Key tradeoff: PLL bandwidth versus phase noise
 - Quantization noise cancellation has made a comeback