Short Course On Phase-Locked Loops and Their Applications Day 2, AM Lecture

Basic Building Blocks Voltage-Controlled Oscillators

Michael Perrott August 12, 2008

Copyright © 2008 by Michael H. Perrott All rights reserved

VCO Design for Wireless Systems

Design Issues

- Tuning Range need to cover all frequency channels
- Noise impacts receiver blocking and sensitivity performance
- Power want low power dissipation
- Isolation want to minimize noise pathways into VCO
- Sensitivity to process/temp variations need to make it manufacturable in high volume

VCO Design For High Speed Data Links

Design Issues

- Same as wireless, but:
 - Required noise performance is often less stringent
 - Tuning range is often narrower

Outline of Talk

- Common oscillator implementations
- Barkhausen's criterion of oscillation
- One-port view of resonance based oscillators
 - Impedance transformation
 - Negative feedback topologies
- Voltage controlled oscillators

Popular VCO Structures

- LC Oscillator: low phase noise, large area
- Ring Oscillator: easy to integrate, higher phase noise

Barkhausen's Criteria for Oscillation

Closed loop transfer function

$$G(jw) = \frac{Y(jw)}{X(jw)} = \frac{H(jw)}{1 - H(jw)}$$

 Self-sustaining oscillation at frequency w_o if

$$H(jw_o) = 1$$

- Amounts to two conditions:
 - Gain = 1 at frequency w_o
 - Phase = n360 degrees (n = 0,1,2,...) at frequency w_o

Example 1: Ring Oscillator

- Gain is set to 1 by saturating characteristic of inverters
- Phase equals 360 degrees at frequency of oscillation

Assume N stages each with phase shift $\Delta \Phi$

$$2N\Delta\Phi = 360^{\circ} \Rightarrow \Delta\Phi = \frac{180^{\circ}}{N}$$

Alternately, N stages with delay ∆t

$$2N\Delta t = T \Rightarrow \Delta t = \frac{T/2}{N}$$

M.H. Perrott

Further Info on Ring Oscillators

- Due to their relatively poor phase noise performance, ring oscillators are rarely used in RF systems
 - They are used quite often in high speed data links, though
- We will focus on LC oscillators in this lecture
- Some useful info on CMOS ring oscillators
 - Maneatis et. al., "Precise Delay Generation Using Coupled Oscillators", JSSC, Dec 1993 (look at pp 127-128 for delay cell description)
 - Todd Weigandt's PhD thesis http://kabuki.eecs.berkeley.edu/~weigandt/

Example 2: Resonator-Based Oscillator

Barkhausen Criteria for oscillation at frequency w_o:

$$G_m Z(jw_o) = 1$$

Assuming G_m is purely real, Z(jw_o) must also be purely real

M.H. Perrott

A Closer Look At Resonator-Based Oscillator

For parallel resonator at resonance

- Looks like resistor (i.e., purely real) at resonance
 - Phase condition is satisfied
 - Magnitude condition achieved by setting G_mR_p = 1

M.H. Perrott

Impact of Different G_m Values

- Root locus plot allows us to view closed loop pole locations as a function of open loop poles/zero and open loop gain (G_mR_p)
 - As gain (G_mR_p) increases, closed loop poles move into right half S-plane

Impact of Setting G_m too low

Closed loop poles end up in the left half S-plane

- Underdamped response occurs
 - Oscillation dies out

Impact of Setting G_m too High

Closed loop poles end up in the right half S-plane

- Unstable response occurs
 - Waveform blows up!

Setting G_m To Just the Right Value

- Closed loop poles end up on jw axis
 - Oscillation maintained
- Issue G_mR_p needs to exactly equal 1
 - How do we achieve this in practice?

Amplitude Feedback Loop

- One thought is to detect oscillator amplitude, and then adjust G_m so that it equals a desired value
 - By using feedback, we can precisely achieve G_mR_p = 1
- Issues
 - Complex, requires power, and adds noise

Leveraging Amplifier Nonlinearity as Feedback

- Practical transconductance amplifiers have saturating characteristics
 - Harmonics created, but filtered out by resonator
 - Our interest is in the relationship between the input and the fundamental of the output

Leveraging Amplifier Nonlinearity as Feedback

- As input amplitude is increased
 - Effective gain from input to fundamental of output drops
 - Amplitude feedback occurs! (G_mR_p = 1 in steady-state)

One-Port View of Resonator-Based Oscillators

- Convenient for intuitive analysis
- Here we seek to cancel out loss in tank with a negative resistance element
 - To achieve sustained oscillation, we must have

$$\frac{1}{G_m} = R_p \quad \Rightarrow \quad G_m R_p = 1$$

M.H. Perrott

One-Port Modeling Requires Parallel RLC Network

Since VCO operates over a very narrow band of frequencies, we can always do series to parallel transformations to achieve a parallel network for analysis

- Warning in practice, RLC networks can have secondary (or more) resonant frequencies, which cause undesirable behavior
 - Equivalent parallel network masks this problem in hand analysis
 - Simulation will reveal the problem

Understanding Narrowband Impedance Transformation

Note: resonance allows Z_{in} to be purely real despite the presence of reactive elements

Comparison of Series and Parallel RL Circuits

- Equate real and imaginary parts of the left and right expressions (so that Z_{in} is the same for both)
 - Also equate Q values

$$R_p = R_s(Q^2 + 1) \approx R_s Q^2 \text{ (for } Q \gg 1)$$
$$L_p = L_s\left(\frac{Q^2 + 1}{Q^2}\right) \approx L_s \text{ (for } Q \gg 1)$$

M.H. Perrott

Comparison of Series and Parallel RC Circuits

- Equate real and imaginary parts of the left and right expressions (so that Z_{in} is the same for both)
 - Also equate Q values

$$R_p = R_s(Q^2 + 1) \approx R_s Q^2 \text{ (for } Q \gg 1)$$
$$C_p = C_s\left(\frac{Q^2}{Q^2 + 1}\right) \approx C_s \text{ (for } Q \gg 1)$$

M.H. Perrott

Example Transformation to Parallel RLC

Assume Q >> 1

Note at resonance:

$$Z_{in} = R_p \approx Q^2 R_s$$
 (purely real)

Tapped Capacitor as a Transformer

• To first order:

$$\frac{R_{in}}{R_L} \approx \left(\frac{C_1 + C_2}{C_1}\right)^2$$

We will see this used in Colpitts oscillator

Negative Resistance Oscillator

This type of oscillator structure is quite popular in current CMOS implementations

- Advantages
 - Simple topology
 - Differential implementation (good for feeding differential circuits)
 - Good phase noise performance can be achieved

Analysis of Negative Resistance Oscillator (Step 1)

- Derive a parallel RLC network that includes the loss of the tank inductor and capacitor
 - Typically, such loss is dominated by series resistance in the inductor

Analysis of Negative Resistance Oscillator (Step 2)

- Split oscillator circuit into half circuits to simplify analysis
 - Leverages the fact that we can approximate V_s as being incremental ground (this is not quite true, but close enough)
- Recognize that we have a diode connected device with a negative transconductance value
 - Replace with negative resistor
 - Note: G_m is *large signal* transconductance value

Design of Negative Resistance Oscillator

- Design tank components to achieve high Q
 - Resulting R_p value is as large as possible
- Choose bias current (I_{bias}) for large swing (without going far into saturation)
 - We'll estimate swing as a function of I_{bias} shortly
- Choose transistor size to achieve adequately large g_{m1}
 - Usually twice as large as 1/R_{p1} to guarantee startup

Calculation of Oscillator Swing

- Design tank components to achieve high Q
 - Resulting R_p value is as large as possible
- Choose bias current (I_{bias}) for large swing (without going far into saturation)
 - We'll estimate swing as a function of I_{bias} in next slide
- Choose transistor size to achieve adequately large g_{m1}
 - Usually twice as large as 1/R_{p1} to guarantee startup

Calculation of Oscillator Swing as a Function of I_{bias}

- By symmetry, assume I₁(t) is a square wave
 - We are interested in determining fundamental component
 - (DC and harmonics filtered by tank)

Variations on a Theme

- Biasing can come from top or bottom
- Can use either NMOS, PMOS, or both for transconductor
 - Use of both NMOS and PMOS for coupled pair would appear to achieve better phase noise at a given power dissipation
 - See Hajimiri et. al, "Design Issues in CMOS Differential LC Oscillators", JSSC, May 1999 and Feb, 2000 (pp 286-287)

Colpitts Oscillator

- Carryover from discrete designs in which single-ended approaches were preferred for simplicity
 - Achieves negative resistance with only one transistor
 - Differential structure can also be implemented
- Good phase noise can be achieved, but not apparent there is an advantage of this design over negative resistance design for CMOS applications

Analysis of Cap Transformer used in Colpitts

- Voltage drop across R_L is reduced by capacitive voltage divider
 - Assume that impedances of caps are less than R_L at resonant frequency of tank (simplifies analysis)
 - Ratio of V₁ to V_{out} set by caps and not R_L
- Power conservation leads to transformer relationship shown

Simplified Model of Colpitts

Transformer ratio set to achieve best noise performance M.H. Perrott

Design of Colpitts Oscillator

- Design tank for high Q
- Choose bias current (I_{bias}) for large swing (without going far into saturation)
- Choose transformer ratio for best noise
 - Rule of thumb: choose N = 1/5 according to Tom Lee
- Choose transistor size to achieve adequately large g_{m1}

Calculation of Oscillator Swing as a Function of I_{bias}

- I₁(t) consists of pulses whose shape and width are a function of the transistor behavior and transformer ratio
 - Approximate as narrow square wave pulses with width W

Clapp Oscillator

- Same as Colpitts except that inductor portion of tank is isolated from the drain of the device
 - Allows inductor voltage to achieve a larger amplitude without exceeded the max allowable voltage at the drain
 - Good for achieving lower phase noise

Hartley Oscillator

- Same as Colpitts, but uses a tapped inductor rather than series capacitors to implement the transformer portion of the circuit
 - Not popular for IC implementations due to the fact that capacitors are easier to realize than inductors

Integrated Resonator Structures

- Inductor and capacitor tank
 - Lateral caps have high Q (> 50)
 - Spiral inductors have moderate Q (5 to 10), but completely integrated and have tight tolerance (< § 10%)</p>
 - Bondwire inductors have high Q (> 40), but not as "integrated" and have poor tolerance (> § 20%)

Integrated Resonator Structures

- Integrated transformer
 - Leverages self and mutual inductance for resonance to achieve higher Q
 - See Straayer et. al., "A low-noise transformer-based 1.7 GHz CMOS VCO", ISSCC 2002, pp 286-287

Quarter Wave Resonator

Impedance calculation (from Lecture 4)

$$Z(\lambda_o/4) \approx -j \frac{2}{\pi} \sqrt{\frac{L}{C}} \left(\frac{w_o}{\Delta w}\right)$$

- Looks like parallel LC tank!
- Benefit very high Q can be achieved with fancy dielectric
- Negative relatively large area (external implementation in the past), but getting smaller with higher frequencies!

Other Types of Resonators

- Quartz crystal
 - Very high Q, and very accurate and stable resonant frequency
 - Confined to low frequencies (< 200 MHz)
 - Non-integrated
 - Used to create low noise, accurate, "reference" oscillators
- SAW devices
 - High frequency, but poor accuracy (for resonant frequency)
- MEMS devices
 - Cantilever beams promise high Q, but non-tunable and haven't made it to the GHz range, yet, for resonant frequency
 - FBAR Q > 1000, but non-tunable and poor accuracy
 - More on this topic in the last lecture this week

Voltage Controlled Oscillators (VCO's)

- Include a tuning element to adjust oscillation frequency
 - Typically use a variable capacitor (varactor)
- Varactor incorporated by replacing fixed capacitance
 - Note that much fixed capacitance cannot be removed (transistor junctions, interconnect, etc.)
 - Fixed cap lowers frequency tuning range

Model for Voltage to Frequency Mapping of VCO

- Model VCO in a small signal manner by looking at deviations in frequency about the bias point
 - Assume linear relationship between input voltage and output frequency

$$F_{out}(t) = K_v v_{in}(t)$$

Model for Voltage to Phase Mapping of VCO

$$F_{out}(t) = K_v v_{in}(t)$$

- Phase is more convenient than frequency for analysis
 - The two are related through an integral relationship

$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi F_{out}(\tau) d\tau = \int_{-\infty}^{t} 2\pi K_v v_{in}(\tau) d\tau$$

Intuition of integral relationship between frequency and phase

Frequency Domain Model of VCO

Take Laplace Transform of phase relationship

$$\Phi_{out}(t) = \int_{-\infty}^{t} 2\pi K_v v_{in}(\tau) d\tau$$

$$\Rightarrow \quad \Phi_{out}(s) = 2\pi K_v v_{in}(s)$$

Note that K_v is in units of Hz/V

Varactor Implementation – Diode Version

- Consists of a reverse biased diode junction
 - Variable capacitor formed by depletion capacitance
 - Capacitance drops as roughly the square root of the bias voltage
- Advantage can be fully integrated in CMOS
- Disadvantages low Q (often < 20), and low tuning range (§ 20%)

A Recently Popular Approach – The MOS Varactor

- Consists of a MOS transistor (NMOS or PMOS) with drain and source connected together
 - Abrupt shift in capacitance as inversion channel forms
- Advantage easily integrated in CMOS
- Disadvantage Q is relatively low in the transition region
 - Note that large signal is applied to varactor transition region will be swept across each VCO cycle

A Method To Increase Q of MOS Varactor

- High Q metal caps are switched in to provide coarse tuning
- Low Q MOS varactor used to obtain fine tuning
- See Hegazi et. al., "A Filtering Technique to Lower LC Oscillator Phase Noise", JSSC, Dec 2001, pp 1921-1930

Supply Pulling and Pushing

- Supply voltage has an impact on the VCO frequency
 - Voltage across varactor will vary, thereby causing a shift in its capacitance
 - Voltage across transistor drain junctions will vary, thereby causing a shift in its depletion capacitance
- This problem is addressed by building a supply regulator specifically for the VCO

Injection Locking

Example of Injection Locking

For homodyne systems, VCO frequency can be very close to that of interferers

- Injection locking can happen if inadequate isolation from mixer RF input to LO port
- Follow VCO with a buffer stage with high reverse isolation to alleviate this problem

Summary

- Several concepts are useful for understanding LC oscillators
 - Barkhausen criterion
 - Impedance transformations
- Voltage-controlled oscillators incorporate a tunable element such as varactor
 - Increased range achieved by using switched capacitor network for coarse tuning
 - Improves varactor Q, as well
- Several things to watch out for
 - Supply pulling, injection locking, coupling

Noise in Voltage Controlled Oscillators

VCO Noise in Wireless Systems

VCO noise has a negative impact on system performance

- Receiver lower sensitivity, poorer blocking performance
- Transmitter increased spectral emissions (output spectrum must meet a mask requirement)
- Noise is characterized in frequency domain

VCO Noise in High Speed Data Links

- VCO noise also has a negative impact on data links
 - Receiver increases bit error rate (BER)
 - Transmitter increases jitter on data stream (transmitter must have jitter below a specified level)
 - Noise is characterized in the time domain

Outline of Talk

- System level view of VCO and PLL noise
- Linearized model of VCO noise
 - Noise figure
 - Equipartition theorem
 - Leeson's formula
- Cyclo-stationary view of VCO noise
 - Hajimiri model
- Back to Leeson's formula

Noise Sources Impacting VCO

Extrinsic noise

- Noise from other circuits (including PLL)
- Intrinsic noise
 - Noise due to the VCO circuitry

VCO Model for Noise Analysis

We will focus on phase noise (and its associated jitter)

Model as phase signal in output sine waveform

$$out(t) = 2\cos(2\pi f_o t + \Phi_{out}(t))$$

Simplified Relationship Between Φ_{out} and Output

Using a familiar trigonometric identity

 $out(t) = 2\cos(2\pi f_o t)\cos(\Phi_{out}(t)) - 2\sin(2\pi f_o t)\sin(\Phi_{out}(t))$

Given that the phase noise is small

 $\cos(\Phi_{out}(t)) \approx 1$, $\sin(\Phi_{out}(t)) \approx \Phi_{out}(t)$

$$\Rightarrow out(t) = 2\cos(2\pi f_o t) - 2\sin(2\pi f_o t)\Phi_{out}(t)$$

Calculation of Output Spectral Density

$$out(t) = 2\cos(2\pi f_o t) - 2\sin(2\pi f_o t)\Phi_{out}(t)$$

Calculate autocorrelation

 $R\{out(t)\} = R\{2\cos(2\pi f_o t)\} + R\{2\sin(2\pi f_o t)\} \cdot R\{\Phi_{out}(t)\}$

Take Fourier transform to get spectrum

$$S_{out}(f) = S_{sin}(f) + S_{sin}(f) * S_{\Phi_{out}}$$

- Note that * symbol corresponds to convolution
- In general, phase spectral density can be placed into one of two categories
 - Phase noise $\Phi_{out}(t)$ is non-periodic
 - Spurious noise $\Phi_{out}(t)$ is periodic

Output Spectrum with Phase Noise

- Suppose input noise to VCO (v_n(t)) is bandlimited, non-periodic noise with spectrum S_{vn}(f)
 - In practice, derive phase spectrum as

$$S_{\Phi_{out}}(f) = \left(\frac{K_v}{f}\right)^2 S_{v_n}(f)$$

Resulting output spectrum

$$S_{out}(f) = S_{sin}(f) + S_{sin}(f) * S_{\Phi_{out}}$$

Measurement of Phase Noise in dBc/Hz

Definition of L(f)

$$L(f) = 10 \log \left(\frac{\text{Spectral density of noise}}{\text{Power of carrier}} \right)$$

- Units are dBc/Hz
- For this case

$$L(f) = 10 \log\left(\frac{2S_{\Phi_{out}}(f)}{2}\right) = 10 \log(S_{\Phi_{out}}(f))$$

Valid when $\Phi_{out}(t)$ is small in deviation (i.e., when carrier is not modulated, as currently assumed)

Single-Sided Version

Definition of L(f) remains the same

$$L(f) = 10 \log \left(\frac{\text{Spectral density of noise}}{\text{Power of carrier}} \right)$$

- Units are dBc/Hz
- For this case

$$L(f) = 10 \log\left(\frac{S_{\Phi_{out}}(f)}{1}\right) = 10 \log(S_{\Phi_{out}}(f))$$

So, we can work with either one-sided or two-sided spectral densities since L(f) is set by *ratio* of noise density to carrier power **Output Spectrum with Spurious Noise**

Suppose input noise to VCO is

$$v_n(t) = \frac{d_{spur}}{K_v} \cos(2\pi f_{spur} t)$$

$$\Rightarrow \Phi_{out}(t) = 2\pi K_v \int v_n(t) dt = \frac{d_{spur}}{f_{spur}} \sin(2\pi f_{spur} t)$$

Resulting output spectrum

Measurement of Spurious Noise in dBc

Definition of dBc

$$10 \log \left(\frac{\text{Power of tone}}{\text{Power of carrier}} \right)$$

- We are assuming double sided spectra, so integrate over positive and negative frequencies to get power
 - Either single or double-sided spectra can be used in practice

For this case

$$10\log\left(\frac{2(\frac{d_{spur}}{2f_{spur}})^2}{2}\right) = 20\log\left(\frac{d_{spur}}{2f_{spur}}\right) \ dBd$$

Calculation of Intrinsic Phase Noise in Oscillators

- Noise sources in oscillators are put in two categories
 - Noise due to tank loss
 - Noise due to active negative resistance
- We want to determine how these noise sources influence the phase noise of the oscillator

Equivalent Model for Noise Calculations

Calculate Impedance Across Ideal LC Tank Circuit

Calculate input impedance about resonance

Consider
$$w = w_o + \Delta w$$
, where $w_o = \frac{1}{\sqrt{L_p C_p}}$
 $Z_{tank}(\Delta w) = \frac{j(w_o + \Delta w)L_p}{1 - (w_o + \Delta w)^2 L_p C_p}$
 $= \frac{j(w_o + \Delta w)L_p}{\frac{1 - w_o^2 L_p C_p}{-2\Delta w (w_o L_p C_p) - \Delta w^2 L_p C_p}} \approx \frac{j(w_o + \Delta w)L_p}{-2\Delta w (w_o L_p C_p)}$
 $\Rightarrow Z_{tank}(\Delta w) \approx \frac{jw_o L_p}{-2\Delta w (w_o L_p C_p)} = \left[-\frac{j}{2}\frac{1}{w_o C_p}\left(\frac{w_o}{\Delta w}\right)\right]$

A Convenient Parameterization of LC Tank Impedance

$$Z_{tank}(\Delta w) \approx -\frac{j}{2} \frac{1}{w_o C_p} \left(\frac{w_o}{\Delta w}\right)$$

- Actual tank has loss that is modeled with R_p
 - Define Q according to actual tank

$$Q = R_p w_o C_p \quad \Rightarrow \quad \frac{1}{w_o C_p} = \frac{R_p}{Q}$$

Parameterize ideal tank impedance in terms of Q of actual tank

$$Z_{tank}(\Delta w) \approx -\frac{j}{2} \frac{R_p}{Q} \left(\frac{w_o}{\Delta w} \right)$$

$$\Rightarrow |Z_{tank}(\Delta f)|^2 \approx \left(\frac{R_p}{2Q}\frac{f_o}{\Delta f}\right)^2$$

Overall Noise Output Spectral Density

Assume noise from active negative resistance element and tank are uncorrelated

$$\frac{\overline{v_{out}^2}}{\Delta f} = \left(\frac{\overline{i_{nRp}^2}}{\Delta f} + \frac{\overline{i_{nRn}^2}}{\Delta f}}{\Delta f}\right) |Z_{tank}(\Delta f)|^2$$

$$= \frac{\overline{i_{nRp}^2}}{\Delta f} \left(1 + \frac{\overline{i_{nRn}^2}}{\Delta f} / \frac{\overline{i_{nRp}^2}}{\Delta f}}{\Delta f}\right) |Z_{tank}(\Delta f)|^2$$

Note that the above expression represents total noise that impacts both amplitude and phase of oscillator output

Parameterize Noise Output Spectral Density

From previous slide

$$\frac{\overline{v_{out}^2}}{\Delta f} = \frac{\overline{i_{nRp}^2}}{\Delta f} \left(1 + \frac{\overline{i_{nRn}^2}}{\Delta f} / \frac{\overline{i_{nRp}^2}}{\Delta f} \right) |Z_{tank}(\Delta f)|^2$$
$$\mathbf{F}(\Delta f)$$

F(∆f) is defined as

$$F(\Delta f) = \frac{\text{total noise in tank at frequency } \Delta f}{\text{noise in tank due to tank loss at frequency } \Delta f}$$
Fill in Expressions

Noise from tank is due to resistor R_p

$$\frac{2}{\Delta f} = 4kT \frac{1}{R_p}$$
 (single-sided spectrum)

Z_{tank}(\(\Delta f)\) found previously

$$Z_{tank}(\Delta f)|^2 \approx \left(\frac{R_p}{2Q}\frac{f_o}{\Delta f}\right)^2$$

Output noise spectral density expression (single-sided)

$$\frac{\overline{v_{out}^2}}{\Delta f} = 4kT \frac{1}{R_p} F(\Delta f) \left(\frac{R_p}{2Q} \frac{f_o}{\Delta f}\right)^2 = 4kTF(\Delta f)R_p \left(\frac{1}{2Q} \frac{f_o}{\Delta f}\right)^2$$

Separation into Amplitude and Phase Noise

- Equipartition theorem states that noise impact splits evenly between amplitude and phase for V_{sig} being a sine wave
 - Amplitude variations suppressed by feedback in oscillator

$$\Rightarrow \frac{\overline{v_{out}^2}}{\Delta f} \Big|_{\text{phase}} = 2kTF(\Delta f)R_p \left(\frac{1}{2Q}\frac{f_o}{\Delta f}\right)^2 \text{ (single-sided)}$$

Output Phase Noise Spectrum (Leeson's Formula)

Output Spectrum

 All power calculations are referenced to the tank loss resistance, R_p

$$P_{sig} = \frac{V_{sig,rms}^2}{R_p} = \frac{(A/\sqrt{2})^2}{R_p}, \quad S_{noise}(\Delta f) = \frac{1}{R_p} \frac{v_{out}^2}{\Delta f}$$
$$(\Delta f) = 10 \log\left(\frac{S_{noise}(\Delta f)}{P_{sig}}\right) = \left[10 \log\left(\frac{2kTF(\Delta f)}{P_{sig}} \left(\frac{1}{2Q}\frac{f_o}{\Delta f}\right)^2\right)\right]$$

M.H. Perrott

Τ,

Example: Active Noise Same as Tank Noise

Noise factor for oscillator in this case is

$$F(\Delta f) = 1 + \frac{\overline{i_{nRn}^2}}{\Delta f} / \frac{\overline{i_{nRp}^2}}{\Delta f} = 2$$

$$L(\Delta f)$$

$$E(\Delta f) = 10 \log \left(\frac{4kT}{P_{sig}} \left(\frac{1}{2Q} \frac{f_o}{\Delta f} \right)^2 \right)$$

$$L(\Delta f) = \log \left(\frac{4kT}{P_{sig}} \left(\frac{1}{2Q} \frac{f_o}{\Delta f} \right)^2 \right)$$

The Actual Situation is Much More Complicated

- Impact of tank generated noise easy to assess
- Impact of transistor generated noise is complicated
 - Noise from M₁ and M₂ is modulated on and off
 - Noise from M₃ is modulated before influencing V_{out}
 - Transistors have 1/f noise
 - Also, transistors can degrade Q of tank

Phase Noise of A Practical Oscillator

- Phase noise drops at -20 dB/decade over a wide frequency range, but deviates from this at:
 - Low frequencies slope increases (often -30 dB/decade)
 - High frequencies slope flattens out (oscillator tank does not filter all noise sources)
- Frequency breakpoints and magnitude scaling are not readily predicted by the analysis approach taken so far

Phase Noise of A Practical Oscillator

Leeson proposed an ad hoc modification of the phase noise expression to capture the above noise profile

$$L(\Delta f) = 10 \log \left(\frac{2FkT}{P_{sig}} \left(1 + \left(\frac{1}{2Q} \frac{f_o}{\Delta f} \right)^2 \right) \left(1 + \frac{\Delta f_{1/f^3}}{|\Delta f|} \right) \right)$$

Note: he assumed that $F(\Delta f)$ was constant over frequency

A More Sophisticated Analysis Method

- Our concern is what happens when noise current produces a voltage across the tank
 - Such voltage deviations give rise to both amplitude and phase noise
 - Amplitude noise is suppressed through feedback (or by amplitude limiting in following buffer stages)
 - Our main concern is phase noise
- We argued that impact of noise divides equally between amplitude and phase for sine wave outputs
 - What happens when we have a non-sine wave output?

Modeling of Phase and Amplitude Perturbations

- Characterize impact of current noise on amplitude and phase through their associated impulse responses
 - Phase deviations are accumulated
 - Amplitude deviations are suppressed

Impact of Noise Current is Time-Varying

- If we vary the time at which the current impulse is injected, its impact on phase and amplitude changes
 - Need a time-varying model

Illustration of Time-Varying Impact of Noise on Phase

High impact on phase when impulse occurs close to the zero crossing of the VCO output

• Low impact on phase when impulse occurs at peak of output *M.H. Perrott*

Define Impulse Sensitivity Function (ISF) – $\Gamma(2\pi f_o t)$

ISF constructed by calculating phase deviations as impulse position is varied

Observe that it is periodic with same period as VCO output

Parameterize Phase Impulse Response in Terms of ISF

M.H. Perrott

Examples of ISF for Different VCO Output Waveforms

- ISF (i.e., Γ) is approximately proportional to derivative of VCO output waveform
 - Its magnitude indicates where VCO waveform is most sensitive to noise current into tank with respect to creating phase noise
- ISF is periodic
- In practice, derive it from simulation of the VCO

Phase Noise Analysis Using LTV Framework

$$h_{n}(t) \longrightarrow h_{\Phi}(t,\tau) \longrightarrow \Phi_{out}(t)$$

Computation of phase deviation for an arbitrary noise current input

$$\Phi_{out}(t) = \int_{-\infty}^{\infty} h_{\Phi}(t,\tau) i_n(\tau) d\tau = \frac{1}{q_{max}} \int_{-\infty}^{t} \Gamma(2\pi f_o \tau) i_n(\tau) d\tau$$

Analysis simplified if we describe ISF in terms of its Fourier series (note: c_o here is different than book)

$$\Gamma(2\pi f_o \tau) = \frac{c_o}{\sqrt{2}} + \sum_{n=1}^{\infty} c_n \cos(n2\pi f_o \tau + \theta_n)$$

$$\Rightarrow \Phi_{out}(t) = \int_{-\infty}^{t} \left(\frac{c_o}{\sqrt{2}} + \sum_{n=1}^{\infty} c_n \cos(n2\pi f_o \tau + \theta_n) \right) \frac{i_n(\tau)}{q_{max}} d\tau$$

Block Diagram of LTV Phase Noise Expression

Noise from current source is mixed down from different frequency bands and scaled according to ISF coefficients

Phase Noise Calculation for White Noise Input (Part 1)

Phase Noise Calculation for White Noise Input (Part 2)

Spectral Density of Phase Signal

From the previous slide

$$S_{\Phi_{out}}(f) = \left(\frac{1}{2\pi f}\right)^2 \left(\left(\frac{c_o}{2}\right)^2 S_A(f) + \left(\frac{c_1}{2}\right)^2 S_B(f) + \cdots\right)$$

Substitute in for S_A(f), S_B(f), etc.

$$S_{\Phi_{out}}(f) = \left(\frac{1}{2\pi f}\right)^2 \left(\left(\frac{c_o}{2}\right)^2 + \left(\frac{c_1}{2}\right)^2 + \cdots\right) 2 \left(\frac{1}{q_{max}}\right)^2 \frac{\overline{i_n^2}}{2\Delta f}$$

Resulting expression

$$S_{\Phi_{out}}(f) = \left(\frac{1}{2\pi f}\right)^2 \left(\sum_{n=0}^{\infty} c_n^2\right) \frac{1}{4} \left(\frac{1}{q_{max}}\right)^2 \frac{\overline{i_n^2}}{\Delta f}$$

Output Phase Noise

We now know

$$S_{\Phi_{out}}(f) = \left|\frac{1}{2\pi f}\right|^2 \left(\sum_{n=0}^{\infty} c_n^2\right) \frac{1}{4} \left(\frac{1}{q_{max}}\right)^2 \frac{\overline{i_n^2}}{\Delta f}$$

$$L(\Delta f) = 10 \log(S_{\Phi_{out}}(\Delta f))$$

Resulting phase noise

$$L(\Delta f) = 10 \log \left(\left(\frac{1}{2\pi\Delta f} \right)^2 \left(\sum_{n=0}^{\infty} c_n^2 \right) \frac{1}{4} \left(\frac{1}{q_{max}} \right)^2 \frac{\overline{i_n^2}}{\Delta f} \right)$$

The Impact of 1/f Noise in Input Current (Part 1)

The Impact of 1/f Noise in Input Current (Part 2)

Calculation of Output Phase Noise in 1/f³ region

From the previous slide

$$S_{\Phi_{out}}(f) \Big|_{1/f^3} = \left(\frac{1}{2\pi f}\right)^2 \left(\frac{c_o}{2}\right)^2 S_A(f)$$

Assume that input current has 1/f noise with corner frequency f_{1/f}

$$S_A(f) = \left(\frac{1}{q_{max}}\right)^2 \frac{\overline{i_n^2}}{\Delta f} \left(\frac{f_{1/f}}{\Delta f}\right)$$

Corresponding output phase noise

$$L(\Delta f) \Big|_{1/f^3} = 10 \log \left(\left(\frac{1}{2\pi\Delta f} \right)^2 \left(\frac{c_o}{2} \right)^2 S_A(f) \right)$$

$$= 10 \log \left(\left(\frac{1}{2\pi\Delta f} \right)^2 \left(c_o^2 \right) \frac{1}{4} \left(\frac{1}{q_{max}} \right)^2 \frac{\overline{i_n^2}}{\Delta f} \left(\frac{f_{1/f}}{\Delta f} \right) \right)$$

Calculation of 1/f³ Corner Frequency

96

Impact of Oscillator Waveform on 1/f³ Phase Noise

- Key Fourier series coefficient of ISF for 1/f³ noise is c_o
 - If DC value of ISF is zero, c_o is also zero
- For symmetric oscillator output waveform
 - DC value of ISF is zero no upconversion of flicker noise! (i.e. output phase noise does not have 1/f³ region)
- For asymmetric oscillator output waveform
 - DC value of ISF is nonzero flicker noise has impact

Issue – We Have Ignored Modulation of Current Noise

In practice, transistor generated noise is modulated by the varying bias conditions of its associated transistor

- As transistor goes from saturation to triode to cutoff, its associated noise changes dramatically
- Can we include this issue in the LTV framework?

Inclusion of Current Noise Modulation

By inspection of figure

$$\Rightarrow \Phi_{out}(t) = \frac{1}{q_{max}} \int_{-\infty}^{t} \Gamma(2\pi f_o \tau) \alpha(2\pi f_o \tau) i_{in}(\tau) d\tau$$

We therefore apply previous framework with ISF as

$$\Gamma_{eff}(2\pi f_o \tau) = \Gamma(2\pi f_o \tau) \alpha(2\pi f_o \tau)$$

Placement of Current Modulation for Best Phase Noise

Phase noise expression (ignoring 1/f noise)

$$L(\Delta f) = 10 \log \left(\left(\frac{1}{2\pi\Delta f} \right)^2 \left(\sum_{n=0}^{\infty} c_n^2 \right) \frac{1}{4} \left(\frac{1}{q_{max}} \right)^2 \frac{\overline{i_n^2}}{\Delta f} \right)$$

Minimum phase noise achieved by minimizing sum of square of Fourier series coefficients (i.e. rms value of Γ_{eff})

Colpitts Oscillator Provides Optimal Placement of α

 Current is injected into tank at bottom portion of VCO swing

 Current noise accompanying current has minimal impact on VCO output phase

Summary of LTV Phase Noise Analysis Method

- Step 1: calculate the impulse sensitivity function of each oscillator noise source using a simulator
- Step 2: calculate the noise current modulation waveform for each oscillator noise source using a simulator
- Step 3: combine above results to obtain Γ_{eff}(2πf_ot) for each oscillator noise source
- Step 4: calculate Fourier series coefficients for each Γ_{eff}(2πf_ot)
- Step 5: calculate spectral density of each oscillator noise source (before modulation)
- Step 6: calculate overall output phase noise using the results from Step 4 and 5 and the phase noise expressions derived in this lecture (or the book)

Alternate Approach for Negative Resistance Oscillator

Recall Leeson's formula

$$L(\Delta f) = 10 \log \left(\frac{2kTF(\Delta f)}{P_{sig}} \left(\frac{1}{2Q} \frac{f_o}{\Delta f} \right)^2 \right)$$

Key question: how do you determine F(∆f)?

F(*Δf*) *Has Been Determined for This Topology*

- Rael et. al. have come up with a closed form expression for F(∆f) for the above topology
- In the region where phase noise falls at -20 dB/dec:

$$F(\Delta f) = 1 + \frac{2\gamma I_{bias} R_p}{\pi A} + \gamma \frac{4}{9} g_{do,M3} R_p \quad (R_p = R_{p1} = R_{p2})$$

- Phase noise analysis
 - J.J. Rael and A.A. Abidi, "Physical Processes of Phase Noise in Differential LC Oscillators", Custom Integrated Circuits Conference, 2000, pp 569-572
- Implementation
 - Emad Hegazi et. al., "A Filtering Technique to Lower LC Oscillator Phase Noise", JSSC, Dec 2001, pp 1921-1930

Designing for Minimum Phase Noise

$$\Delta f) = 1 + \frac{2\gamma I_{bias}R_p}{\pi A} + \gamma \frac{4}{9}g_{do,M3}R_p$$
(A) (B) (C)
(A) Noise from tank resistance
(B) Noise from M₁ and M₂
(C) Noise from M

To achieve minimum phase noise, we'd like to minimize F(∆f)

The above formulation provides insight of how to do this

Key observation: (C) is often quite significant

Elimination of Component (C) in F(Δf)

- Capacitor C_f shunts noise from M₃ away from tank
 - Component (C) is eliminated!
- Issue impedance at node V_s is very low
 - Causes M₁ and M₂ to present a low impedance to tank during portions of the VCO cycle
 - Q of tank is degraded

Use Inductor to Increase Impedance at Node V_s

- Voltage at node V_s is a rectified version of oscillator output
 - Fundamental component is at twice the oscillation frequency
- Place inductor between V_s and current source
 - Choose value to resonate with C_f and parasitic source capacitance at frequency 2f_o
- Impedance of tank not degraded by M₁ and M₂
 - Q preserved!
Designing for Minimum Phase Noise – Next Part

Let's now focus on component (B)
 Depends on bias current and oscillation amplitude

Minimization of Component (B) in F(Af)

- So, it would seem that I_{bias} has no effect!
 - Not true want to maximize A (i.e. P_{sig}) to get best phase noise, as seen by:

$$L(\Delta f) = 10 \log \left(\frac{2kTF(\Delta f)}{P_{sig}} \left(\frac{1}{2Q} \frac{f_o}{\Delta f} \right)^2 \right)$$

Current-Limited Versus Voltage-Limited Regimes

$$F(\Delta f) = 1 + \frac{2\gamma I_{bias} R_p}{\pi A}$$
(B)

- Oscillation amplitude, A, cannot be increased above supply imposed limits
- If I_{bias} is increased above the point that A saturates, then
 (B) increases
- Current-limited regime: amplitude given by $A = \frac{2}{\pi}I_{bias}R_p$
- Voltage-limited regime: amplitude saturated

Best phase noise achieved at boundary between these regimes!

Summary

- Leeson's model is outcome of linearized VCO noise analysis
- Hajimiri method provides insights into cyclostationary behavior, 1/f noise upconversion and impact of noise current modulation
- Rael method useful for CMOS negative-resistance topology
 - Closed form solution of phase noise!
 - Provides a great deal of design insight
- Practical VCO phase noise analysis is done through simulation these days
 - Spectre RF from Cadence, FastSpice from Berkeley Design Automation is often utilized to estimate phase noise for integrated oscillators