Short Course On Phase-Locked Loops and Their Applications Day 2, PM Lecture

Basic Building Blocks (Part II) High Speed Frequency Dividers, Phase Detectors, Charge Pumps, and Loop Filter Design

> Michael Perrott August 12, 2008

Copyright © 2008 by Michael H. Perrott All rights reserved

Fractional-N Frequency Synthesis

- Challenging building blocks
 - VCO
 - Divider
 - Charge Pump (and PFD)

Outline of Talk

- High speed frequency dividers
 - Background of key digital building blocks
- PFD and Charge Pumps
- Loop filter design
 - Closed loop PLL design using CAD

Digital Background for Dividers

Edge-triggered Registers

- Achieved by cascading two latches that are transparent out of phase from one another
- Two general classes of latches
 - Static employ positive feedback
 - Robust
 - Dynamic store charge on parasitic capacitance
 - Smaller, lower power in most cases
 - Negative: must be refreshed (due to leakage currents)

Static Latches

Classical case employs cross-coupled NAND/NOR gates to achieve positive feedback

Above example uses cross-coupled inverters for positive feedback

- Set, reset, and clock transistors designed to have enough drive to overpower cross-coupled inverters
- Relatively small number of transistors
- Robust

Dynamic Latches

- Leverage CMOS technology
 - High quality switches with small leakage available
 - Can switch in and store charge on parasitic capacitances quite reliability
- Achieves faster speed than full swing logic with fewer transistors
- Issues: higher sensitivity to noise, minimum refresh rate required due to charge leakage

True Single Phase Clocked (TSPC) Latches

- Allow register implementations with only one clock!
 - Latches made transparent at different portions of clock cycle by using appropriate latch "flavor" – n or p
 - n latches are transparent only when Φ is 1
 - p latches are transparent only when Φ is 0
- Benefits: simplified clock distribution, high speed

Example TSPC Registers

Positive edge-triggered version

Negative edge-triggered version

A Simplified Approach to TSPC Registers

Clever implementation of TSPC approach can be achieved with reduced transistor count

- For more info on TSPC approach, see
 - J. Yuan and C. Svensson, "New Single-Clock CMOS Latches and Flipflops with Improved Speed and Power Savings", JSSC, Jan 1997, pp 62-69

Embedding of Logic within Latches

- We can often increase the speed of a logic function fed into a latch through embedding
 - Latch slowed down by extra transistors, but logic/latch combination is faster than direct cascade of the functions
- Method can be applied to both static and dynamic approaches
 - Dynamic approach shown above

Highest Speed Achieved with Differential CML Latch

- Employs positive feedback for memory
 - Realized with cross-coupled NMOS differential pair
- Method of operation
 - Follow mode: current directed through differential amplifier that passes input signal
 - Hold mode: current shifted to cross-coupled pair

High Speed Frequency Dividers

High Speed Frequency Dividers in Wireless Systems

Design Issues: high speed, low power

M.H. Perrott

Divide-by-2 Circuit (Johnson Counter)

- Achieves frequency division by clocking two latches (i.e., a register) in negative feedback
- Latches may be implemented in various ways according to speed/power requirements

Divide-by-2 Using a TSPC register

- Advantages
 - Reasonably fast, compact size
 - No static power dissipation, differential clock not required
- Disadvantages
 - Slowed down by stacked PMOS, signals goes through three gates per cycle
 - Requires full swing input clock signal

Divide-by-2 Using Razavi's Topology

- Faster topology than TSPC approach
- See B. Rezavi et. al., "Design of High Speed, Low Power Frequency Dividers and Phase-Locked Loops in Deep Submicron CMOS", JSSC, Feb 1995, pp 101-109

Explanation of Razavi Divider Operation (Part 1)

- Left latch:
 - Clock drives current from PMOS devices of a given latch onto the NMOS cross-coupled pair
 - Latch output voltage rises asymmetrically according to voltage setting on gates of outside NMOS devices
- Right latch:
 - Outside NMOS devices discharge the latch output voltage as the left latch output voltage rises

Explanation of Razavi Divider Operation (Part 2)

- Right latch:
 - Clock drives current from PMOS devices of a given latch onto the NMOS cross-coupled pair
 - Latch output voltage rises asymmetrically according to voltage setting on gates of outside NMOS devices
- Left latch:
 - Outside NMOS devices discharge the latch output voltage as the left latch output voltage rises

Explanation of Razavi Divider Operation (Part 3)

- Process starts over again with current being driven into left latch
 - Voltage polarity at the output of the latch has now flipped

Advantages and Disadvantages of Razavi Topology

- Advantages
 - Fast no stacked PMOS, signal goes through only two gates per cycle
- Disadvantages
 - Static power
 - Full swing, differential input clock signal required
- Note: quarter period duty cycle can be turned into fifty percent duty cycle with OR gates after the divider
 - See my thesis at http://www-mtl.mit.edu/~perrott

Divide-by-2 Using Wang Topology

- Claims to be faster than Razavi topology
 - Chief difference is addition of NMOS clock devices and different scaling of upper PMOS devices
- See HongMo Wang, "A 1.8 V 3 mW 16.8 GHz Frequency Divider in 0.25µm CMOS", ISSCC 2000, pp 196-197

Explanation of Wang Topology Operation (Part 1)

Left latch

Current driven into latch and output voltage responds similar to Razavi architecture

Right latch

Different than Razavi architecture in that latch output voltage is not discharged due to presence of extra NMOS

Explanation of Wang Topology Operation (Part 2)

Same process repeats on the right side

The left side maintains its voltages due to presence of NMOS device

Advantages and Disadvantages of Wang Topology

- Advantages
 - Fast no stacked PMOS, signal goes through only two gates per cycle
- Disadvantages
 - Static power
 - Full swing, differential input clock signal required

Divide-by-2 Using CML Latches

Fastest structure uses resistors for load

Explanation of CML Topology Operation (Part 1)

Left latch

- Current directed into differential amp portion of latch
 - Latch output follows input from right latch

Right latch

- Current directed into cross-coupled pair portion of latch
 - Latch output is held

Explanation of CML Topology Operation (Part 2)

Left latch

- Current is directed into cross-coupled pair
 - Latch output voltage retained
- Right latch
 - Current is directed into differential amp
 - Latch output voltage follows input from left latch

Explanation of CML Topology Operation (Part 3)

- Same process repeats on left side
 - Voltage polarity is now flipped

Advantages and Disadvantages of CML Topology

Advantages

- Very fast no PMOS at all, signal goes through only two gates per cycle
- Smaller input swing for input clock than previous approaches
 - Allows signal transitioning at higher frequencies
- Disadvantages
 - Static power
 - Differential signals required
 - Large area compared to previous approaches
 - Biasing sources required
- Note: additional speedup can be obtained by using inductor peaking (i.e., place inductor in load)

Creating Higher Divide Values (Synchronous Approach)

Cascades toggle registers and logic to perform division

- Advantage: low jitter (explained shortly)
- Problems: high power (all registers run at high frequency), high loading on clock (IN signal drives all registers)

Creating Higher Divide Values (Asynchronous Approach)

- Higher division achieved by simply cascading divide-by-2 stages
- Advantages over synchronous approach
 - Lower power: each stage runs at a lower frequency, allowing power to be correspondingly reduced
 - Less loading of input: IN signal only drives first stage
 - Disadvantage: jitter is larger

M.H. Perrott

Jitter in Asynchronous Designs

- Each logic stage adds jitter to its output
 - Jitter accumulates as it passes through more and more gates

Jitter in Synchronous Designs

- Transition time of register output is set by the clock, not the incoming data input
 - Synchronous circuits have jitter performance corresponding to their clock
 - Jitter does not accumulate as signal travels through synchronous stages

High Speed, Low Power Asynchronous Dividers

Highest speed achieved with differential CML registers

- Static power consumption not an issue for high speed sections, but wasteful in low speed sections
- Lower power achieved by using full swing logic for low speed sections

Differential to Full Swing Converter

- Use an opamp style circuit to translate differential input voltage to a single-ended output
- Use an inverter to amplify the single-ended output to full swing level
Issue: Architecture Very Sensitive to DC Offset

- Opamp style circuit has very high DC gain from V_{in} to node Y
- DC offset will cause signal to rise above or fall below inverter threshold
 - Output signal rails rather than pulsing

Use Resistor Feedback to Reduce DC Gain

- Idea: create transresistance amplifier rather than voltage amplifier out of inverter by using feedback resistor
 - Presents a low impedance to node Y
 - Current from opamp style circuit is shunted through resistor
 - DC offset at input shifts output waveform slightly, but not node Y (to first order)
- Circuit is robust against DC offset!

Alternate Implementation of Inverter Feedback

- Nonlinear feedback using MOS devices can be used in place of resistor
 - Smaller area than resistor implementation
- Analysis done by examining impact of feedback when output is high or low

Impact of Nonlinear Feedback When Output is High

- Corresponds to case where current flows into node Y
 - NMOS device acts like source follower
 - PMOS device is shut off
- Output is approximately set to V_{gs} of NMOS feedback device away from inverter threshold voltage
 - Inverter input is set to a value that yields that output voltage
 - High DC gain of inverter insures it is close to inverter threshold

Impact of Nonlinear Feedback When Output is Low

- Corresponds to case where current flows out of node Y
 - NMOS device is shut off
 - PMOS device acts like source follower
- Output is approximately set to Vgs of PMOS feedback device away from inverter threshold voltage
 - Inverter input is set to a value that yields that output voltage
 - High DC gain of inverter insures it is close to inverter threshold

Variable Frequency Division

Classical design partitions variable divider into two sections

- Asynchronous section (called a prescaler) is fast
 - Often supports a limited range of divide values
- Synchronous section has no jitter accumulation and a wide range of divide values
- Control logic coordinates sections to produce a wide range of divide values

Dual Modulus Prescalers

Dual modulus design supports two divide values

In this case, divide-by-8 or 9 according to CON signal

One cycle resolution achieved with front-end "2/3" divider
M.H. Perrott

Divide-by-2/3 Design (Classical Approach)

- Normal mode of operation: CON^{*} = 0) Y = 0
 - Register B acts as divide-by-2 circuit
- Divide-by-3 operation: CON^{*} = 1) Y = 1
 - Reg B remains high for an extra cycle
 - Causes Y to be set back to 0) Reg B toggles again
 - CON^{*} must be set back to 0 before Reg B toggles to prevent extra pulses from being swallowed

Control Qualifier Design (Classical Approach)

Must align CON signal to first "2/3" divider stage

- CON signal is based on logic clocked by divider output
 - There will be skew between "2/3" divider timing and CON
- Classical approach cleverly utilizes outputs from each section to "gate" the CON signal to "2/3" divider

M.H. Perrott

Multi-Modulus Prescalers

Cascaded 2/3 sections achieves a range of 2ⁿ to 2ⁿ⁺¹-1

- Above example is 8/ ··· /15 divider
- Asynchronous design allows high speed and low power operation to be achieved
 - Only negative is jitter accumulation

A More Modular Design

- Perform control qualification by synchronizing within each stage before passing to previous one
 - Compare to previous slide in which all outputs required for qualification of first 2/3 stage
- See Vaucher et. al., "A Family of Low-Power Truly Modular Programmable Dividers ...", JSSC, July 2000

Implementation of 2/3 Sections in Modular Approach

- Approach has similar complexity to classical design
 - Consists of two registers with accompanying logic gates
- Cleverly utilizes "gating" register to pass synchronized control qualifying signal to the previous stage

Implementation of Latch and And Gate in 2/3 Section

- Combine AND gate and latch for faster speed and lower power dissipation
- Note that all primitives in 2/3 Section on previous slide consist of this combination or just a straight latch

Can We Go Even Faster?

Speed Limitations of Divide-by-2 Circuit

 Maximum speed limited only by propagation delay (delay₁, delay₂) of latches and setup time of latches (T_s)

$$\frac{T_{IN}}{2} > delay_1 + T_s, \quad \frac{T_{IN}}{2} > delay_2 + T_s$$

Speed Limitations of Gated Divide-by-2/3 Circuit

Maximum speed limited by latch plus gating logic

$$\frac{T_{IN}}{2} > delay_2 + delay_3 + T_s$$

Gated divide-by-2/3 fundamentally slower than divide-by-2

M.H. Perrott

Divide-by-2/3 Using Phase Shifting

Achieves speed of divide-by-2 circuits!

MUX logic runs at half the input clock speed

M.H. Perrott

Implementation Challenges to Phase Shifting

Avoiding glitches

- By assumption of sine wave characteristics
 - Craninckx et. al., "A 1.75 GHz/3 V Dual-Modulus Divideby-128/129 Prescaler ...", JSSC, July 1996
- By make-before-break switching
 - My thesis: http://www-mtl.mit.edu/~perrott/
- Through re-timed multiplexor
 - Krishnapura et. al, "A 5.3 GHz Programmable Divider for HiPerLan in 0.25µm CMOS", JSSC, July 2000

Avoiding jitter due to mismatch in phases

- Through calibration
 - Park et. al., "A 1.8-GHz Self-Calibrated Phase-Locked Loop with Precise I/Q Matching", JSSC, May 2001

Further Reduction of MUX Operating Frequency

Leverage the fact that divide-by-2 circuit has 4 phases

- Create divide-by-4/5 by cascading two divide-by-2 circuits
 - Note that single cycle pulse swallowing still achieved
- Mux operates at one fourth the input frequency!

M.H. Perrott

Impact of Divide-by-4/5 in Multi-Modulus Prescaler

Issue – gaps are created in divide value range

Divide-by-4/5 lowers swallowing resolution of following stage

Method to "Fill In" Divide Value Range

- Allow divide-by-4/5 to swallow more than one input cycle per OUT period
 - Divide-by-4/5 changed to Divide-by-4/5/6/7

Note: at least two divide-by-2/3 sections must follow M.H. Perrott

Example Architecture for a Phase-Shifted Divider

- Phase shifting in first divide-by-4/5/6/7 stage to achieve high speed
- Remaining stages correspond to gated divide-by-2/3 cells
- For details, see my thesis
 - http://www-mtl.mit.edu/~perrott/

PFD/Charge Pump

Analog Phase Comparison Path

Performs measurement of Ref and Div phase difference

- Sets PLL bandwidth and determines PLL stability
 - Note: Digital control of charge pump current allows tuning
- Key performance issues
 - Linearity, noise, power, area

Achieving Linear Operation of PFD/Charge Pump

- Key issue: pulses need to fully settle to avoid nonlinearity in PFD/charge pump
 - Impact of nonlinearity is noise folding/spurs
 - Runt pulses cause "dead zone" in PFD characteristic

Add Delay in Reset Path to Prevent Dead Zone

Minimum pulse width set by length of delay

Avoids incomplete settling at the expense of higher noise

Simple View of Charge Pump

- Current sources implemented by current mirror circuits
 - Variation puts switches at supply/gnd rails
- Key issue: hard to achieve precise matching of up and down currents

M.H. Perrott

Practical Charge Pump Characteristic

- Gain slope changes due to up/down current mismatch
 - Causes nonlinearity in phase comparison operation
- Offset in phase due to timing mismatch between Up and Down PFD paths

Offset PFD for High Linearity

- Change delay path such that Up pulse is always constant and follows Down pulse
 - Only Down pulse varies in width

Confines phase variation to one side of PFD characteristic *M.H. Perrott*

Single-Ended Versus Differential Charge Pumps

Stray capacitance causes increased transient times for charge pump

- Increases the minimum required on-time of PFD pulses
- Differential structure substantially reduces impact of stray capacitance
- Reduces voltage variation on cap due to switching action M.H. Perrott

Example Differential Charge Pump Structure

- Zero output current is achieved by canceling Up and Down currents
- In practice, this structure is rarely used due to high noise it produces

Loop Filter Design

Outline

- Closed-Loop Design of Frequency Synthesizers
 - Introduction
 - Background on Classical Open Loop Design Approach
 - Closed Loop Design Approach
 - Example and Verification
 - Conclusion

$\Sigma - \Delta$ Fractional-N Frequency Synthesizer

- Focus on this architecture since it is essentially a "super set" of other synthesizers, including integer-N and fractional-N
 - If we can design and simulate this structure, we can also do so for classical integer-N designs

Frequency-domain Model

Aug. 2002 for details

Closed loop dynamics parameterized by

$$G(f) = \frac{A(f)}{1 + A(f)}$$

where $A(f) = \frac{\alpha I_{cp} H(f) K_V}{N_{nom} 2\pi j f}$

M.H. Perrott

Review of Classical Design Approach

Given the desired closed-loop bandwidth, order, and system type:

- 1. Choose an appropriate topology for H(f)
 - Depends on order, type
- 2. Choose pole/zero values for H(f) as appropriate for the required bandwidth
- 3. Adjust the open-loop gain to achieve the required bandwidth while maintaining stability
 - Plot gain and phase bode plots of A(f)
 - Use phase (or gain) margin criterion to infer stability
Example: First Order, Type I with Parasitic Poles

First Order, Type I: Frequency and Step Responses

Limitations of Open Loop Design Approach

- Constrained for applications which require precise filter response
- Complicated once parasitic poles are taken into account
- Poor control over filter shape
- Inadequate for systems with third order rolloff
 - Phase margin criterion based on second order systems

Closed loop design approach: Directly design G(f) by specifying dominant pole and zero locations on the s-plane (pole-zero diagram)

Closed Loop Design Approach: Overview

- G(f) completely describes the closed loop dynamics
 - Design of this function is the ultimate goal

Closed Loop Design Approach

- Instead of indirectly designing G(f) using plots of A(f), solve for G(f) directly as a function of specification parameters
- Solve for A(f) that will achieve desired G(f)
- Account for the impact of parasitic poles/zeros

Closed Loop Design Approach: Implementation

- Download PLL Design Assistant Software
 - Part of CppSim package at http://www.cppsim.com
- Read accompanying manual
- Algorithm described by C.Y. Lau et. al. in "Fractional-N Frequency Synthesizer Design at the Transfer Function Level Using a Direct Closed Loop Realization Algorithm", Design Automation Conference, 2003

Definition of Bandwidth, Order, and Shape for G(f)

- Bandwidth f_o
 - Defined in asymptotic manner as shown
- Order n
 - Defined according to the rolloff characteristic of G(f)
- Shape
 - Defined according to standard filter design methodologies
 - Butterworth, Bessel, Chebyshev, etc.

Definition of Type

- Type I: one integrator in PLL open loop transfer function
 - VCO adds on integrator
 - Loop filter, H(f), has no integrators
- Type II: two integrators in PLL open loop transfer function
 - Loop filter, H(f), has one integrator

Loop Filter Transfer Function Vs Type and Order of G(f)

H(s) Topology For Different Type and Orders of G(f)

Practical PLL implementations limited to above

- Prohibitive analog complexity for higher order, type
- Open loop gain, K, will be calculated by algorithm

Loop filter gain related to open loop gain as shown above

Passive Topologies to Realize a Second Order PLL

DAC is used for Type I implementation to coarsely tune VCO

Allows full range of VCO to be achieved

Passive Topologies to Realize a Third Order PLL

Inductor is necessary to create a complex pole pair
 Must be implemented off-chip due to its large value

Problem with Passive Loop Filter Implementations

- Large voltage swing required at charge pump output
 - Must support full range of VCO input
- Non-ideal behavior of inductors (for third order G(f) implementations)
 - Hard to realize large inductor values
 - Self resonance of inductor reduces high frequency attenuation

Alternative: active loop filter implementation

Guidelines for Active Loop Filter Design

- Use topologies with unity gain feedback in the opamp
 - Minimizes influence of opamp noise

- Perform level shifting in feedback of opamp
 - Fixes voltage at charge pump output

Prevent fast edges from directly reaching opamp inputs

Will otherwise cause opamp to be driven into nonlinear region of operation

Active Topologies To Realize a Second Order PLL

- Follows guidelines from previous slide
- Charge pump output is terminated directly with a high Q capacitor
 - Smooths fast edges from charge pump before they reach the opamp input(s)

Active Topologies To Realize a Third Order PLL

Follows active implementation guidelines from a few slides ago

Example Design

- Type II, 3^{rd} order, Butterworth, $f_o = 300$ kHz, $f_z/f_o = 0.125$
 - No parasitic poles
- Required loop filter transfer function can be found from table:

$$\Rightarrow H(s) = \frac{K_{LF} \left(1 + \frac{s}{w_z}\right)}{s \left(1 + \frac{s}{w_p Q_p} + \left(\frac{s}{w_p}\right)^2\right)} \quad \text{where}$$
$$K_{LF} = \frac{N_{nom} K}{\alpha I_{cp} K_v}$$

Use PLL Design Assistant to Calculate Parameters

$$H(s) = \frac{K_{LF} \left(1 + \frac{s}{w_z}\right)}{s \left(1 + \frac{s}{w_p Q_p} + \left(\frac{s}{w_p}\right)^2\right)} \quad \text{where} \quad K_{LF} = \frac{N_{nom} K}{\alpha I_{cp} K_v}$$

Dynamic Parameters	paris. pole		On	Noise Parameters					
fo 300e3 Hz	paris. Q		On	ref. freq	Hz				
order C1 C2 @ 3	paris. pole	Hz	On	out freq.	Hz				
shape 💽 Butter 🔿 Bessel	paris. Q		On	Detector					
C Cheby1 C Cheby2 C Elliptical	paris. pole	Hz	On						
ripple dB	paris. pole	Hz	On		dBc/Hz Un				
type C1 @ 2	paris. zero	Hz	On	freq. offset	Hz				
fz/fo 0.125 Hz	paris. zero	Hz	On	S-D C1 C2 On C3 C4 C5 On C3 C4 C5	On				
Resulting Open Loop Parameters				Resulting Plots and Jitter					
K: 2.538e+011 alter: 0n				Pole/Zero Diagram C Transfer Function					
fp: 4.583e+005		Арр	у 📗	C Step Response C Noise Plot					
fz: <u>3.750e+004</u> Hz, alter: 0n				Xmin? Xmax? Ymir	n? Ymax?				
•Qp: 7.050e-001	er:		rms jitter:						
Written by Michael Perrott (http://www-mtl.mit.edu/~perrott)									

Resulting Step Response and Pole/Zero Diagram

Impact of Open Loop Parameter Variations

Dynamic Parameters	paris. pole		On	Noise Parameters			
fo 300e3 Hz	paris. Q	_	On	ref. freq Hz			
order C1 C2 @ 3	paris. pole	Hz	On	outfreq. Hz			
shape 💿 Butter 🔿 Bessel	paris.Q		On	Detector Inc. Inc.			
C Cheby1 C Cheby2 C Elliptical	paris. pole	Hz	On				
ripple dB	paris. pole	Hz	On	dBc/Hz Un			
type C1 @ 2	paris. zero	Hz	On	freq. offset			
fz/fo 0.125 Hz	paris. zero	Hz	On	S-D C1C2 On On On			
Resulting Open Loop Parameters				Resulting Plots and Jitter			
K: 2.538e+011 • alter: -0.2:0.2:0.2 On				C Pole/Zero Diagram C Transfer Function			
fp: 4.583e+005 Hz alt	Hz alter: -0.2:0.2:0.2		/	• Step Response C Noise Plot			
fz: 3.750e+004 Hz alter: 0n		Xmin? Xmax? Ymin? Ymax?					
Qp: 7.050e-001 In the salter: On the salter: On the salter: In the salter: In the salter: In the salter of the sal							

Open loop parameter variations can be directly entered into tool

Resulting Step Responses and Pole/Zero Diagrams

Impact of variations on the loop dynamics can be visualized instantly and taken into account at early stage of design

Design with Parasitic Pole

Include a parasitic pole at nominal value f_{p1} = 1.2MHz

Dynamic Parameters	paris, pole 1.2e6	Hz (m	Noise Parameters				
fo 300e3 Hz	patis Q		Dn	ref. freq Value? Hz				
order C1 C2 @ 3	paris. pole	Hz C	Dn	out freq. Value? Hz				
shape 💿 Butter 🔿 Bessel	paris. Q		Dn	Detector dRo/Hz On				
C Cheby1 C Cheby2 C Elliptical	paris. pole	Hz C	Dn					
ripple j dB	paris. pole	Hz C	Dn					
type C1 €2	paris. zero	Hz C	Dn	Hz				
fz/fo 1/8 Hz	paris. zero	Hz C	Dn					
Resulting Open-Loop Parameters Resulting Plots and Jitter								
K: 2.294e+011 alter: On				Pole/Zero Diagram C Transfer Function C Star Destroyage C Naise Dist				
fp: 4.841e+005 Hz alt	er: On On	Apply		O Step Response O Noise Plot				
fz: 3.750e+004 Hz alt	er: On D			Xmin? Xmax? Ymin? Ymax?				
Qp: 7.931e-001 alt	er: On	n	rms j	itter:				
Written by Michael Perrott (http://www-mtl.mit.edu/~perrott)								

➡ K, f_p and Q_p are adjusted to obtain the same dominant pole locations

Noise Estimation

Phase noise plots can be easily obtained
 Jitter calculated by integrating over frequency range

	and the second							
Dynamic Parameters	paris. pole		Hz	On		Noise Para	ameters	*****
fo 300e3 Hz	paris. Q		_	On	ref. freq	20e6	Hz	
order C1 C2 @ 3	paris.pole		Hz	00	out freq.	1.84e9	Hz	
shape 💿 Butter 🔿 Bessel	paris. Q			Ûn	Detector	-75.9		
C Cheby1 C Cheby2 C Elliptical	paris. pole		Hz	On		-75.5		
ripple dB	paris. pole		– Hz	On		-139.3	dBc/Hz	On
type C1 @ 2	paris, zero		- H7	On	freq. off	set 5e6	Hz	
fz/fo 0.125 Hz	paris. zero		Hz	On	S-D O 03 (1 C 2 On C 4 C 5		On
Resulting Open Loop Parameters Resulting Plots and Jitter						•••		
K: 2.538e+011 al	er:	On			C Pole/	Zero Diagram 🛛 🤇	Transfer Func	tion
fp: 4.583e+005 Hz al	er:	On	Apply	/	C Step	Response (Noise Plot 	
fz: 3.750e+004 Hz al	er:				1e4	1e8 •18	-60	
Qp: 7.050e-001 al	er:	On	•	rmsj	jitter: 13.791	ps		

Calculated Versus Simulated Phase Noise Spectrum

Without parasitic pole:

Calculated Versus Simulated Phase Noise Spectrum

With parasitic pole at 1.2 MHz:

Noise under Open Loop Parameter Variations

Impact of open loop parameter variations on phase noise and jitter can be visualized immediately

Conclusion

- CAD-based closed loop design approach facilitates:
 - Accurate control of closed loop dynamics
 - Bandwidth, Order, Shape, Type
 - Straightforward design of higher order PLL's
 - Direct assessment of impact of parasitic poles/zeros
- Techniques implemented in a GUI-based CAD tool

- Beginners can quickly come up to speed in designing PLL's
- Experienced designers can quickly evaluate the performance of different PLL configurations