
Short Course On 
Phase-Locked Loops and Their Applications

Day 3, AM Lecture

Advanced Analog Synthesizer Techniques

Michael Perrott
August 13, 2008

Copyright © 2008 by Michael H. Perrott
All rights reserved.



2M.H. Perrott

Outline

Frequency and phase modulation
- Leveraging Fractional-N synthesizers for this task

PLL filter compensation

Sigma-Delta quantization noise cancellation

Fast and accurate behavioral simulation
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Constant Envelope Modulation

Popular for cell phones and cordless phones due to 
the reduced linearity requirements on the power amp
- Allows a more efficient power amp design

Transmitter power is reduced

Baseband to RF Modulation Power Amp

Transmitter
Output

Baseband
Input

Constant-Envelope Modulation

Transmit
Filter
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Frequency Shift Keying

Sends information encoded in instantaneous frequency
- Can build simple transmitters and receivers

Pagers use this modulation method
Issue – want to obtain high spectral efficiency
- Need to choose an appropriate transmit filter
- Need to choose an appropriate value of Δf

GHz

out(t)

out(t)

Sout(f)
data(t) 2Δf

Transmit
Filter

v(t) out(t)data(t)

Assume infinite bandwidth
in this example

fo

1
-1
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A More Detailed Model

By inspection of figure

The choice of Δf is now parameterized by h and Td- h is called the modulation index, Td is symbol period

cos(Φmod(t))

sin(Φmod(t))

I(t)

Q(t)

Φmod(t)
2πTransmit

Filter
fmod(t)data(t) h

Assume DC gain = 1

1
-1

2Td

h
2Td

h
2Td

for infinite
transmit filter

bandwidth

hπ

Td

Td
Td

Note:  phase modulation has nonlinear impact on I and Q!
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MSK Modulation

Choose h such that the phase rotates § 90o each 
symbol period
- Based on previous slide, we need h = 1/2
- Note:  1-bit of information per symbol period

Bit rate = symbol rate

I

Q
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A More Convenient Model for Analysis

Same as previous model, but we represent data as 
impulses convolved with a rectangular pulse
- Note that h = 1/2 for MSK

cos(Φmod(t))

sin(Φmod(t))

I(t)

Q(t)

Φmod(t)
2πTransmit

Filter
fmod(t)data(t) h

Assume DC gain = 1

2Td

h
2Td

h
2Td

for infinite
transmit filter

bandwidth

hπ

Td

Td
Td

1

-1

Td

0
1x(t)
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Impact of Sending a Single Data Impulse

To achieve MSK modulation, resulting phase shift 
must be +/- 90o (i.e., π/4)

cos(Φmod(t))

sin(Φmod(t))

I(t)

Q(t)

Φmod(t)
2πTransmit

Filter
fmod(t)data(t) 1

Assume DC gain = 1

4Td

1
4Td

for infinite
transmit filter

bandwidth

π/2

Td

Td
Td

1

-1

Td

0
1x(t)

0
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Include Influence of Transmit Filter

For MSK modulation

- Where * denotes convolution

cos(Φmod(t))

sin(Φmod(t))

I(t)

Q(t)

Φmod(t)
2πTransmit

Filter
fmod(t)data(t) 1

4Td

1
4Td

Transmit filter
bandwidth = B Hz

π/2

Td

Td
Td

1

-1

Td

0
1x(t)

0

rect(Td,t)

p(t)
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Gaussian Minimum Shift Keying

Definition
- Minimum shift keying in which the transmit filter is chosen 

to have a Gaussian shape (in time and frequency) with 
bandwidth = B Hz

Key parameters
- Modulation index:  as previously discussed

h = 1/2
- BTd product:  ratio of transmit filter bandwidth to data rate

For GSM phones:   BTd = 0.3  
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Recall unmodulated VCO model

Relationship between sine wave output and instantaneous 
phase

Impact of modulation
- Same as examined with VCO/PLL modeling, but now we 

consider Φout(t) as sum of modulation and noise components

Modeling The Impact of VCO Phase Modulation

Φmod(t)

Φtn(t)

Phase/Frequency
modulation Signal

f

Phase
Noise

fo

Sout(f)
Overall

phase noise

Φout
2cos(2πfot+Φout(t))

out(t)
f

0

SΦmod(f)

Spurious
Noise
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Relationship Between Sine Wave Output and its Phase

Key relationship

Using a familiar trigonometric identity

Approximation given |Φtn(t)| << 1
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Relationship Between Output and Phase Spectra

Approximation from previous slide

Autocorrelation (assume modulation signal 
independent of noise)

Output spectral density (Fourier transform of 
autocorrelation)

- Where * represents convolution and
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Impact of Phase Modulation on the Output Spectrum

Spectrum of output is distorted compared to SΦmod(f)
Spurs converted to phase noise

Φmod(t)

Φtn(t)

Phase/Frequency
modulation Signal

f

Phase
Noise

fo

Sout(f)
Overall

phase noise

Φout
2cos(2πfot+Φout(t))

out(t)
f

0

SΦmod(f)

Spurious
Noise

Φmod(t)

Φtn(t)

Phase/Frequency
modulation Signal

ffo

Sout(f)
Overall

phase noise

Φout
2cos(2πfot+Φout(t))

out(t)
f

0

SΦmod(f)
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Leveraging a Fractional-N Synth for Phase Modulation

Provides a practical means of achieving accurate 
phase modulation
Primarily digital structure
- Analog components consist of charge pump, loop filter, 

and VCO

Vin(t)N[k] Out(t)Frequency
Synthesizer

Ref(t)

T

fRF
f

RF Transmit
Spectrum

0

Σ−ΔP(ej2πfT)

Transmit
Filter

Data[k]

T Td

t t

Digital Analog
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Linearized Model of Fractional-N Modulator

Wider modulation allows faster data rate
- Increases impact of Sigma-Delta and Charge Pump noise

Φout(t)Φmod(t)
2cos(2πfct+Φout(t))

Out(t)n[k]

q[k]

Σ−Δ

G(f)

f
0

f0 f0

f
0

j f
1

Freq   Phase

fo
1-G(f)

fo

fo

-20 dB/dec

G(f)�Nnom

Charge Pump Noise
and Reference Spur VCO Noise

Σ−Δ
Quantization

Noise

ffc

Output
Spectrum

Filtered
Transmit

Data

PLL
Dynamics

data[k]
B

P(ej2πfT)

Transmit
Filter

Tradeoff between data rate and noise performance
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Improving the Data Rate/Noise Tradeoff

Compensation filter allows data rate to exceed PLL 
bandwidth
- Allows higher data rates
- Improves SNR and out-of-band emission performance

Φout(t)
Φtn(t)

Φmod(t)
2cos(2πfct+Φout(t))

Out(t)
C(ej2πfT)

C(ej2πfT)

f
0

Overall
Phase Noise

Dominated
by VCO noise

Dominated by
Charge Pump noise

ffc

Output
Spectrum

n[k]

q[k]

Data[k]

Σ−Δ

G(f)

f
0

f
0

j f
1

Freq   Phase

fo

G(f)

fo

Σ−Δ
Quantization

Noise

Filtered
Transmit

Data

PLL
Dynamics

fo

Inverse of PLL
Dynamics

P(ej2πfT)

Transmit
Filter

Pc(e
j2πfT)

1

B
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The Issue of Mismatch

Mismatch between compensation filter and PLL forms 
parasitic pole/zero pair
- Causes intersymbol interference (ISI) 

C(ej2πfT)

C(ej2πfT)

n[k]

q[k]

Data[k]

Σ−Δ

G(f)

fo

fo

fofG

G(f)

fG

P(ej2πfT)

Pc(e
j2πfT)

Instantaneous
Frequency

>



19M.H. Perrott

Example of ISI Due to Mismatch

Frequency modulation is fairly insensitive to mismatch
- Phase modulation is much more sensitive

-23% Gain Error 0% Gain Error 25% Gain Error



Is There An Alternate Means of Increasing Data 
Rate?
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Classical Fractional-N Synthesizer Architecture

Use an accumulator to perform dithering operation
- Fractional input value fed into accumulator
- Carry out bit of accumulator fed into divider

PFD
Charge
Pump

Frac

out(t)e(t)

Accumulator

v(t)

N[k]

Loop
Filter

Divider

VCO

ref(t)

div(t)

M

M+1

Fout = M.F  Fref

M.F

 Fref

M

Carry
Out

Kingsford-Smith
US Patent 3,928,813

1974 (filing date)
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Integer-N Synthesizer Signals with Fout = 4.25Fref

Constant divide value of N = 4 leads to frequency 
error
- Error pulse widths increase as phase error accumulates

N[k]

out(t)

div(t)

ref(t)

e(t)

4

5
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N[k]

out(t)

div(t)

ref(t)

e(t)

4

5

Dithering allows average divide value of N = 4.25
- Reset phase error by periodically “swallowing” a VCO 

cycle
Achieved by dividing by 5 every 4 reference cycles

Fractional-N Synthesizer Signals with Fout = 4.25Fref
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Key Observations for Classical Fractional-N Dithering

The instantaneous phase error always remains less 
than one VCO cycle
We can directly relate the phase error to the residue 
of the accumulator that is providing the dithering

1 VCO
Period

N[k]

out(t)

div(t)

ref(t)

e(t)

phase
error

4

5
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Accumulator Operation

Carry out bit is asserted when accumulator residue reaches 
or surpasses its full scale value
Accumulator residue corresponds to instantaneous phase 
error
- Increments by the fractional value input into the accumulator

residue[k]

carry_out[k]

frac[k] =.25

1-bit
M-bit

M-bit
frac[k]

Accumulator
carry_out[k]

residue[k]

clk(t)
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The Issue of Spurious Tones

PFD error waveform is periodic
- Creates spurious tones in synthesizer output at lower 

frequencies than the reference
- Ruins noise performance of the synthesizer

PFD
Charge
Pump

Nsd[m]

out(t)e(t)

Accumulator

v(t)
Loop
Filter

VCO

ref(t)

div(t) Divider

Carry Out

f
0 Fref

Se(f)Fractional
Spurs
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The Phase Interpolation Technique

Leverage the fact that the phase error due to 
fractional technique is predicted by the instantaneous 
residue of the accumulator
- Cancel out phase error based on accumulator residue

PFD
Charge
Pump

Nsd[m]

out(t)e(t)

Accumulator

v(t)
Loop
Filter

VCO

ref(t)

div(t) Divider

Carry Out

D/A

Residue Kingsbury
US Patent 4,179,670

1978 (filing date)



28M.H. Perrott

The Problem With Phase Interpolation

Gain matching between PFD error and scaled D/A 
output must be extremely precise
- Any mismatch will lead to spurious tones at PLL output

PFD
Charge
Pump

Nsd[m]

out(t)e(t)

Accumulator

v(t)
Loop
Filter

VCO

ref(t)

div(t) Divider

Carry Out

D/A

Residue

Matching issue prevented this technique from catching on
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Examine Classical Fractional-N Signals

Goal:  eliminate the fractional spurs

1

4

2

4

3

4

0

4

1

4

2

4

3

4

div(t)

ref(t)

e(t)

f
0 Fref

Se(f) Fractional
Spurs
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Method 1:  Vertical Compensation

“Fill in” pulses so that they are constant area
- Fractional spurs are eliminated!

1

4

2

4

3

4

0

4

1

4

2

4

3

4

e(t)

f
0 Fref

Se(f)

3

4

2

4

1

4

4

4

3

4

2

4

1

4

1

4

2

4

3

4

0

4

1

4

2

4

3

4

div(t)

ref(t)

e(t)
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Method 2:  Horizontal Compensation

Use constant width pulses of 
varying height to achieve constant 
area pulses
- Largely eliminates fractional spurs

1

4
3

4

2

4
2

4

3

4
1

4

0

4
4

4

1

4
3

4

2

4
2

4

3

4
1

4

e(t)

f
0 Fref

Se(f)

1

4

2

4
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4
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4
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4

3

4

e(t)

3

4

2

4

1

4

4
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3

4

2

4

1

4

1

4

2

4

3

4

0

4

1

4

2

4

3

4

div(t)

ref(t)
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Implementation of Horizontal Cancellation

We begin with the basic fractional-N structure 

div(t)

ref(t)

Loop
Filter

out(t)

N[k]

Divider

PFD

Reg

ref(t)

div(t)

e
2
(t)

e
2
(t)
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Add a Second PFD with Delayed Divider Signal

div(t)

ref(t)

delayed
div(t)

ref(t)

PFD

Loop
Filter

out(t)

N[k]

Divider

PFD

RegReg

ref(t)

div(t)

delayed
div(t)

e
1
(t)

e
2
(t)

e
1
(t)

e
2
(t)
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Scale Error Pulses According to Accumulator Residue

div(t)

ref(t)

delayed
div(t)

ref(t)

PFD

Loop
Filter

out(t)

Divider

PFD

RegReg

1-ε[k]

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

 residue[k] = ε[k]

frac[k]
Accum
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A Closer Look at Adding the Scaled Error Pulses

Goal – keep area constant for each pulse
- It’s easier to see this from a slightly different viewpoint

PFD

PFD 1-ε[k]

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

e(t)

e(t)
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Alternate Viewpoint

The sum of scaled pulses can now be viewed as 
horizontal cancellation

PFD

PFD 1-ε[k]

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

1

4
3

4

2

4
2

4

3

4
1

4

0

4
4

4

1

4
3

4

2

4
2

4

3

4
1

4

e(t)

e(t)
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Implementation of Pulse Scaling Operation

Direct output of a differential current DAC into two 
charge pumps 

Y. Dufour
US Patent 6,130,561

1998 (filing date)

Issue:  practical non-idealities kill performance

PFD

PFD

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

Charge
Pump

Charge
Pump

1-ε[k]

2n

Residue[k]

Loop
Filter
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Primary Non-idealities of Concern

Delay mismatch

DAC current
element mismatch

Incomplete Fractional
Spur Suppression

Proposed approach:  dramatically reduce impact of these 
non-idealities using mixed-signal processing techniques

PFD

PFD

ε[k]

ref(t)

div(t)

delayed
div(t)

Charge
Pump

Charge
Pump

1-ε[k]

2n

Residue[k]

Tvco+Δ

e(t)

f
0 Fref

Se(f)
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Eliminate Impact of DAC Current Element Mismatch

Apply standard DAC noise shaping techniques to 
shape mismatch noise to high frequencies
- See Baird and Fiez, TCAS II, Dec 1995

Allows up to 5% mismatch between unit elements 
without degrading our desired performance targets 

PFD

PFD

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

DAC
Mismatch
Shaping

Charge
Pump

Charge
Pump

1-ε[k]
ε[k]

2nn+1

Residue[k]

Loop
Filter
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Eliminate Impact of Timing Mismatch

Swap paths between divider outputs in a pseudo-
random fashion
- Need to also swap ε[k] and 1-ε[k] sequence

Allows up to 5 ps mismatch without degrading our 
desired performance targets 

PFD

PFD

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

DAC
Mismatch
Shaping

Charge
Pump

Charge
Pump

1-ε[k]
ε[k]

2nn+1

Residue[k]

Loop
Filter

Timing Mismatch

Compensation and

Re-synchronization

vco_out(t)

Tvco+Δ
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Improve Horizontal Cancellation Performance

Sampling circuit accumulates error pulses before 
passing their information to the loop filter
- A common analog trick used for decades

Eliminates issue of having non-square error pulse 
shapes 

PFD

PFD

ε[k]

ref(t)

div(t)

delayed
div(t)

DAC
Mismatch
Shaping

Charge
Pump

Charge
Pump

1-ε[k]
ε[k]

2nn+1

Residue[k]

Loop
Filter

Timing Mismatch

Compensation and

Re-synchronization

vco_out(t)

Sampler

f
0 Fref

Se(f)



Application:
A 1 MHz Bandwidth Fractional-N Frequency 

Synthesizer Implementation
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Design Goals

Output frequency:  3.6 GHz
- Allows dual-band output (1.8 GHz and 900 MHz)

Reference frequency:  50 MHz
- Allows low cost crystal reference

Bandwidth:  1 MHz
- Allows fast settling time and ~1 Mbit/s modulation rate

Noise:  < -150 dBc/Hz at 20 MHz offset (3.6 GHz carrier)
- Phase noise at the 20 MHz frequency offset is very 

challenging for GSM and DCS transmitters
GSM:  -162 dBc/Hz at 20 MHz offset (900 MHz carrier)
DCS:  -151 dBc/Hz at 20 MHz offset (1.8 GHz carrier)

Simultaneous achievement of the above bandwidth 
and noise targets is very challenging
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Evaluate Noise Performance with 1 MHz PLL BW 

G(f) parameters
- 1 MHz BW, Type II, 2nd order rolloff, extra pole at 2.5 MHz

Required PLL noise parameters (with a few dB of margin)
- Output-referred charge pump noise:  -105 dBc/Hz
- VCO noise:  -155 dBc/Hz at 20 MHz offset (3.6 GHz carrier)
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Calculated Phase Noise for Classical Fractional-N

2nd Order Σ−Δ

3rd Order Σ−Δ

-132 dBc/Hz at 20 MHz

-126 dBc/Hz at 20 MHz
These do NOT meet 

our target of 
-150 dBc/Hz at 20 MHz
(3.6 GHz carrier freq.) 
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Calculated Phase Noise for 7-bit PFD/DAC Synth

7-bit PFD/DAC

-155 dBc/Hz at 20 MHz !
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Simulation of PFD/DAC Synthesizer using CppSim

Phase noise plots to follow:  40e6 time steps in 11 min
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2nd Order Σ−Δ Fractional-N Performance

Replace accumulator with second order Σ−Δ modulator
Set residue into PFD/DAC equal to zero

PFD/DAC
Loop
Filter

out(t)

DividerRegReg

ref(t)

div(t)

 residue[k] = 0

frac[k]
2nd order
Σ−Δ
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Calculate PLL Noise for 2nd Order Σ−Δ Synthesizer

2nd order Σ−Δ
- Click on 2nd order 

S-D quantization 
noise in tool
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Simulated Phase Noise of 2nd Order Σ−Δ Synthesizer

PLL Design Assistant accurately models simulated noise!

-139

-119

-99

-79

-59

-39

S
pu

rs
 (

dB
c)

0.1 1 10

-180

-160

-140

-120

-100

-80

Frequency Offset from Carrier (MHz)

L(
f)

 (
dB

c/
H

z)
CppSim Simulated Phase Noise for Cell: wb_synth_sd2, Lib: WBSynth_Example, Sim: test.par

freqfilt

SD Noise     
Detector Noise
VCO Noise     
Total Noise   
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PFD/DAC
Loop
Filter

out(t)

DividerRegReg

ref(t)

div(t)

 residue[k]

frac[k]
Accumulator

7-bit PFD/DAC Synthesizer Performance

Use accumulator for dithering
Enable cancellation by connecting accumulator residue 
to PFD/DAC
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Calculate PLL Noise for 7-bit PFD/DAC Synthesizer

PFD/DAC
- Adjust S-D Quant. 

Noise
Delay mismatch (11 ps)
- Adjust Detector noise
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Simulated PLL Phase Noise of 7-bit PFD/DAC

PLL Design Assistant accurately models simulated noise!
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Fabricated by 
National

Semiconductor

Funded by
MARCO C2S2

Scott Meninger

A 1 MHz BW Fractional-N Frequency Synthesizer IC

Implements 
proposed 7-bit 
PFD/DAC 
structure
- 0.18u CMOS
- Circuit details 

published in 
VLSI 2005
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Measured Noise Suppression

Comparison of 7-bit PFD/DAC synthesizer with 2nd order ΣΔ
Synthesizer
Low freq noise ~2dB worse because of phase swapping
29dB quantization noise suppression measured at 10MHz !
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A Highly Digital Implementation of a GMSK Transmitter 

A fractional-N frequency synthesizer provides highly 
accurate phase/frequency modulation capability
- Multiple carrier frequencies easily achieved with digital 

frequency division 
- N-bit PFD/DAC extends achievable data rate for a given 

noise performance (at higher frequency offsets)

PFD/DAC
Loop
Filter

out(t)

DividerRegReg

ref(t)

div(t)

 residue[k] = ε[k]

Accum

0

12 2
50 MHz

Digital

GMSK

Modulator

Carrier Frequency

1.8 GHz/900 MHz

3.6 GHz, 1 MHz BW, 7-bit PFD/DAC SynthesizerReference Band Select
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GMSK Eye Diagrams at 271 kbit/s (~900 MHz Carrier)

CppSim simulation
- 100e6 points: < 44 min

Measured
- HP 89441 Vec. Analyzer

Close agreement between simulated and measured results!
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GMSK Spectra Plots at 271 kbit/s (~900 MHz Carrier)

CppSim simulation
- 100e6 points: < 44 min

Measured
- HP 8563E 

Spectrum Analyzer



59M.H. Perrott

GMSK Eye Diagrams at 500 kbit/s (~900 MHz Carrier)

Measured
- HP 89441 Vec. Analyzer

CppSim simulation
- 100e6 points: < 44 min
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GMSK Spectra Plots at 500 kbit/s (~900 MHz Carrier)

Measured
- HP 8563E 

Spectrum Analyzer

CppSim simulation
- 100e6 points: < 44 min
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GMSK Eye Diagrams at 1 Mbit/s (~900 MHz Carrier)

Measured
- HP 89441 Vec. Analyzer

CppSim simulation
- 100e6 points: < 44 min
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GMSK Spectra Plots at 1 Mbit/s (~900 MHz Carrier)

Measured
- HP 8563E 

Spectrum Analyzer

CppSim simulation
- 100e6 points: < 44 min
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Conclusions

Fractional-N frequency synthesizers can achieve 
dramatic improvement in achieving high PLL 
bandwidth with excellent noise performance
- The PFD/DAC approach presented here is only one of 

many possibilities to achieve this goal
Design and simulation methodologies are invaluable 
for achieving better performance
- Analytical modeling of noise can be quite accurate

The PLL Design Assistant can be useful in this area
- Behavioral simulation can be used to verify analytical 

models
CppSim offers a convenient and fast framework for this



Simulation of Frequency Synthesizers
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Impact of Synthesizer Noise

Noise must be low to 
meet transmit mask 
requirement 

Noise must be low to meet 
receiver SNR and blocking 
requirements 

Channel
Select

Digital
Baseband

D/A

Channel
Select

Digital
Baseband

A/D
RF Out RF In

Wireless Transmitter Wireless Receiver

Frequency
Synthesizer

Frequency
Synthesizer

Transmitter
Channel

f

Synthesizer
Noise

Receiver
Channel

f

Synthesizer
Noise
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Impact of Synthesizer Dynamic Behavior

Settling time must be fast to support channel hopping 
requirements 

Channel
Select

Digital
Baseband

D/A

Channel
Select

Digital
Baseband
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RF Out RF In

Wireless Transmitter Wireless Receiver

Frequency
Synthesizer

Frequency
Synthesizer

Transmitter
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f
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What Do We Want From a Simulator?

Accurate estimation of synthesizer performance
- Noise spectral density
- Dynamic behavior

Fast computation to allow use in IC design flow
Simple to use
- C++, Verilog, Matlab



68M.H. Perrott

Problems with Current 
Simulators
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Problem 1:  Classical Simulators are Slow

High output frequency       High sample rate 
Long time constants          Long time span for transients

Large number of simulation time steps required

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−Δ
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

10-100 kHz

M
M+1

1-10 GHz
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Problem 2:  Classical Simulators Are Inaccurate

PFD output is not bandlimited
- PFD output must be simulated in discrete-time

Phase error is inaccurately simulated
Non-periodic dithering of divider complicates matters

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−Δ
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1
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Example:  Classical Constant-Time Step Method

Directly sample the PFD output according to the 
simulation sample period
- Simple, fast, readily implemented in Matlab, Verilog, C++

Issue – quantization noise is introduced
- This noise overwhelms the PLL noise sources we are 

trying to simulate

PFD
e(t)ref(t)

e(t)
t

e[n]
n

Sample Period = Ts(Johns and Martin,
Analog Integrated Circuit Design)
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Alternative:  Event Driven Simulation

Set simulation time samples at PFD edges
- Sample rate can be lowered to edge rate!

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1
(Smedt et al, CICC ’98,
Demir et al, CICC ’94,
Hinz et al, Circuits and Systems ’00)
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Issue:  Simulation of Filter Blocks is Complicated

Filtering computation must deal with non-constant 
time step
- Closed-form calculation is tedious
- Iterative computation is time-consuming

Complicates Verilog, Matlab, or C++ implementation

Sample Period Non-constant

e(t)
e(t)

t

e[n]
n

Tk Tk+1

t
Loop Filter

h(t)

v(t)
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Is there a better way?
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Proposed Approach: Use Constant Time Step

Straightforward CT to DT transformation of filter blocks
- Use bilinear transform or impulse invariance methods

Overall computation framework is fast and simple
- Simulator can be based on Verilog, Matlab, C++ 

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts  h(Tsn)

Ts
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Problem: Quantization Noise at PFD Output

Edge locations of PFD output are quantized
- Resolution set by time step:  Ts

Reduction of Ts leads to long simulation times

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

εTs Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts  h(Tsn)
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Proposed Approach: View as Series of Pulses

Area of each pulse set by edge locations
Key observations:
- Pulses look like impulses to loop filter
- Impulses are parameterized by their area and time offset

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

1

0

1

0

εTs Ts/2

area = εarea = Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts  h(Tsn)
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Proposed Method

Set e[n] samples according to pulse areas
- Leads to very accurate results

Mathematical analysis given in paper
- Fast computation

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

e[n]
n

1

0

1

0

1

0

εTs Ts/2

area = εarea = Ts/2

ε/Ts1/2
e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts  h(Tsn)
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Implementation Overview

Compute transition values in VCO block

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

(Assume VCO output
is a square-wave
for this discussion)
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Calculation of Transition Values

Model VCO based on its phase

v[n]

VCO

out[n]

π

Φvco(t)

t

εk

out[n]

n
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Calculation of Transition Values

Determine output transition time according to phase

v[n]

VCO

out[n]

π

Φvco(t)

t

Φ[k]

Φ[k-1]

out(t)

εk

π
out[n]

n
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Calculation of Transition Values

Use first order interpolation to determine transition value

v[n]

VCO

out[n]

π

Φvco(t)

tεk Φ[k]-Φ[k-1]
π-Φ[k-1]

=

Φ[k]

Φ[k-1]

out(t)

out[n] n

εk

π

2 -1

out[n]

εk

n
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Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]
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Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]
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Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output
Compute Filter output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]
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Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output
Compute Filter output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]
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Computation of PFD Output

Goal:  compute transition information in terms of 
primitive blocks (registers, XOR gates, etc.)
- Allows straightforward implementation in simulator
- Accommodates a rich variety of PFD structures 

ref[n]

n

n

div[n]

e[n]

n

S

RD
Q
Q

D
Q
Q

D
Q
Q

D
Q
Q
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Implementation of Primitives - Registers

Relevant timing information is contained in the clock 
signal
- Transfer transition information from the clock to the 

register output- Complement output using a sign change

D
Q
Q

clk[n] n

out[n] n

n

clk
out

out

out[n]
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Implementation of Primitives – Logic Gates

Relevant timing information contained in the input 
that causes the output to transition
- Determine which input causes the transition, then pass 

its transition value to the output

a[n] n

b[n] n

n

a
b

out

out[n]
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Issue:  Must Observe Protocol When Adding Noise

Divider and PFD blocks operate on a strict protocol for 
their incoming signals
- Values other than 1 or -1 are interpreted as edges
- Example:  inputting noise at divider input breaks protocol!

Add noise only at places where signal is “analog”
- PFD, charge pump, and loop filter outputs are fine

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

Noise
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Can we speed the 
simulation up further?
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out(t)v(t)

div(t)

N[m]

Divider
VCO

N[m]
cyclesN[m-1]

cycles

div(t)

out(t)

Time step of simulation 
typically set by VCO output

Small time steps means long 
simulation runs

Divider output often 100 
times lower in frequency

Sample Rate Set by Highest Frequency Signal

Can we sample according to divider output?
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Divider Output Can Be Computed from VCO Phase

Key Idea:  Model VCO and Divider using Phase

v(t)

VCO

Kv
s

Φvco(t)out(t)v(t)

div(t)

N[m]

Divider
div(t)

Divider

VCO

2πN[m]
N[m]
cyclesN[m-1]

cycles 2πN[m-1]

Φvco(t)

t

div(t)div(t)

out(t)

(Van Halen et al,  Circuits and Systems ’96)
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Combine VCO and Divider Blocks

PFD Charge
Pump

Nsd[n]

e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

2πN[m]

Φvco(t)

t

Φ[k]

Φ[k-1]

div(t)

div[n] n
εk

εk

Nπ

Transient simulations run 2 orders of magnitude faster!

Compute divider output using 
first order interpolation of VCO 
phase
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Does it really work?
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The CppSim Simulator

Blocks are implemented with C/C++ code
- High computation speed
- Complex block descriptions

Users enter designs in graphical form using Cadence 
or Sue2 schematic capture
- System analysis and transistor level analysis are 

possible in the same CAD framework
Resulting signals are viewed in Matlab or CppSimView
- Powerful post-processing and viewing capability

Simulation package freely downloadable at
http://www.cppsim.com
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The Sue2 and CppSimView Environment
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Experimental Prototype to Verify Approach

1.8 - 1.9 GHz

0.6 μ CMOS IC

Digital Σ−Δ
Modulator

PFD Out
20 MHz

64 Modulus
Divider

Loop
Filter

2
Frequency

Select

Perrott et al
JSSC, Dec 97
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Simulation Results - Dynamic Behavior

Simulation time:  260 thousand time steps in 5 seconds 
on a 650 MHz Pentium III Laptop (custom C++ simulator)

Nsd  (Input to Σ−Δ Modulator)
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Noise Sources Included in Simulation

Dominant noise sources in synthesizer
- Quantization noise of Σ−Δ  (produced by Σ−Δ block)
- Charge pump noise (calculated from Hspice)
- VCO noise (input-referred – calculated from measurement)

PFD
ref(t)

div(t)

Loop
Filter v(t)

1.85e-25
A2/Hz 3.25e-16

V2/Hz

1.2e-24
A2/Hz1.5 μA

1.5 μA

f

Σ−Δ
Quantization

Noise

Charge
Pump
Noise

VCO
Noise

(Input-referred)
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Measured  Synthesizer Noise Performance

Measured
VCO Noise
(open loop)

(closed loop)

Measured Overall
Synthesizer Noise

Noise Floor of
Measurement

System
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Simulated Synthesizer Noise Performance
L(

f) 
(d

B
c/

H
z)

-60
-70
-80
-90

-100
-110
-120
-130
-140
-150

Simulated Spectrum:  1/Ts = 20*(reference frequency)

100 kHz25 kHz 1 MHz 10 MHz 25 MHz

Measured Noise
Simulated Noise

Simulated results compare quite well to measured!
Simulation time:  5 million time steps in 80 seconds
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Conclusion

Phase locked loop circuits can be quickly and 
accurately simulated
- Accuracy achieved with area conservation principle
- Fast computation by combining VCO and Divider blocks

A variety of simulation frameworks can be used
- C++, Matlab, Verilog
- Circuit primitives are supported

Noise and dynamic performance of fractional-N 
frequency synthesizers can be investigated at system level
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