
Short Course On
Phase-Locked Loops and Their Applications

Day 3, AM Lecture

Advanced Analog Synthesizer Techniques

Michael Perrott
August 13, 2008

Copyright © 2008 by Michael H. Perrott
All rights reserved.

2M.H. Perrott

Outline

Frequency and phase modulation
- Leveraging Fractional-N synthesizers for this task

PLL filter compensation

Sigma-Delta quantization noise cancellation

Fast and accurate behavioral simulation

3M.H. Perrott

Constant Envelope Modulation

Popular for cell phones and cordless phones due to
the reduced linearity requirements on the power amp
- Allows a more efficient power amp design

Transmitter power is reduced

Baseband to RF Modulation Power Amp

Transmitter
Output

Baseband
Input

Constant-Envelope Modulation

Transmit
Filter

4M.H. Perrott

Frequency Shift Keying

Sends information encoded in instantaneous frequency
- Can build simple transmitters and receivers

Pagers use this modulation method
Issue – want to obtain high spectral efficiency
- Need to choose an appropriate transmit filter
- Need to choose an appropriate value of Δf

GHz

out(t)

out(t)

Sout(f)
data(t) 2Δf

Transmit
Filter

v(t) out(t)data(t)

Assume infinite bandwidth
in this example

fo

1
-1

5M.H. Perrott

A More Detailed Model

By inspection of figure

The choice of Δf is now parameterized by h and Td- h is called the modulation index, Td is symbol period

cos(Φmod(t))

sin(Φmod(t))

I(t)

Q(t)

Φmod(t)
2πTransmit

Filter
fmod(t)data(t) h

Assume DC gain = 1

1
-1

2Td

h
2Td

h
2Td

for infinite
transmit filter

bandwidth

hπ

Td

Td
Td

Note: phase modulation has nonlinear impact on I and Q!

6M.H. Perrott

MSK Modulation

Choose h such that the phase rotates § 90o each
symbol period
- Based on previous slide, we need h = 1/2
- Note: 1-bit of information per symbol period

Bit rate = symbol rate

I

Q

7M.H. Perrott

A More Convenient Model for Analysis

Same as previous model, but we represent data as
impulses convolved with a rectangular pulse
- Note that h = 1/2 for MSK

cos(Φmod(t))

sin(Φmod(t))

I(t)

Q(t)

Φmod(t)
2πTransmit

Filter
fmod(t)data(t) h

Assume DC gain = 1

2Td

h
2Td

h
2Td

for infinite
transmit filter

bandwidth

hπ

Td

Td
Td

1

-1

Td

0
1x(t)

8M.H. Perrott

Impact of Sending a Single Data Impulse

To achieve MSK modulation, resulting phase shift
must be +/- 90o (i.e., π/4)

cos(Φmod(t))

sin(Φmod(t))

I(t)

Q(t)

Φmod(t)
2πTransmit

Filter
fmod(t)data(t) 1

Assume DC gain = 1

4Td

1
4Td

for infinite
transmit filter

bandwidth

π/2

Td

Td
Td

1

-1

Td

0
1x(t)

0

9M.H. Perrott

Include Influence of Transmit Filter

For MSK modulation

- Where * denotes convolution

cos(Φmod(t))

sin(Φmod(t))

I(t)

Q(t)

Φmod(t)
2πTransmit

Filter
fmod(t)data(t) 1

4Td

1
4Td

Transmit filter
bandwidth = B Hz

π/2

Td

Td
Td

1

-1

Td

0
1x(t)

0

rect(Td,t)

p(t)

10M.H. Perrott

Gaussian Minimum Shift Keying

Definition
- Minimum shift keying in which the transmit filter is chosen

to have a Gaussian shape (in time and frequency) with
bandwidth = B Hz

Key parameters
- Modulation index: as previously discussed

h = 1/2
- BTd product: ratio of transmit filter bandwidth to data rate

For GSM phones: BTd = 0.3

11M.H. Perrott

Recall unmodulated VCO model

Relationship between sine wave output and instantaneous
phase

Impact of modulation
- Same as examined with VCO/PLL modeling, but now we

consider Φout(t) as sum of modulation and noise components

Modeling The Impact of VCO Phase Modulation

Φmod(t)

Φtn(t)

Phase/Frequency
modulation Signal

f

Phase
Noise

fo

Sout(f)
Overall

phase noise

Φout
2cos(2πfot+Φout(t))

out(t)
f

0

SΦmod(f)

Spurious
Noise

12M.H. Perrott

Relationship Between Sine Wave Output and its Phase

Key relationship

Using a familiar trigonometric identity

Approximation given |Φtn(t)| << 1

13M.H. Perrott

Relationship Between Output and Phase Spectra

Approximation from previous slide

Autocorrelation (assume modulation signal
independent of noise)

Output spectral density (Fourier transform of
autocorrelation)

- Where * represents convolution and

14M.H. Perrott

Impact of Phase Modulation on the Output Spectrum

Spectrum of output is distorted compared to SΦmod(f)
Spurs converted to phase noise

Φmod(t)

Φtn(t)

Phase/Frequency
modulation Signal

f

Phase
Noise

fo

Sout(f)
Overall

phase noise

Φout
2cos(2πfot+Φout(t))

out(t)
f

0

SΦmod(f)

Spurious
Noise

Φmod(t)

Φtn(t)

Phase/Frequency
modulation Signal

ffo

Sout(f)
Overall

phase noise

Φout
2cos(2πfot+Φout(t))

out(t)
f

0

SΦmod(f)

15M.H. Perrott

Leveraging a Fractional-N Synth for Phase Modulation

Provides a practical means of achieving accurate
phase modulation
Primarily digital structure
- Analog components consist of charge pump, loop filter,

and VCO

Vin(t)N[k] Out(t)Frequency
Synthesizer

Ref(t)

T

fRF
f

RF Transmit
Spectrum

0

Σ−ΔP(ej2πfT)

Transmit
Filter

Data[k]

T Td

t t

Digital Analog

16M.H. Perrott

Linearized Model of Fractional-N Modulator

Wider modulation allows faster data rate
- Increases impact of Sigma-Delta and Charge Pump noise

Φout(t)Φmod(t)
2cos(2πfct+Φout(t))

Out(t)n[k]

q[k]

Σ−Δ

G(f)

f
0

f0 f0

f
0

j f
1

Freq Phase

fo
1-G(f)

fo

fo

-20 dB/dec

G(f)�Nnom

Charge Pump Noise
and Reference Spur VCO Noise

Σ−Δ
Quantization

Noise

ffc

Output
Spectrum

Filtered
Transmit

Data

PLL
Dynamics

data[k]
B

P(ej2πfT)

Transmit
Filter

Tradeoff between data rate and noise performance

17M.H. Perrott

Improving the Data Rate/Noise Tradeoff

Compensation filter allows data rate to exceed PLL
bandwidth
- Allows higher data rates
- Improves SNR and out-of-band emission performance

Φout(t)
Φtn(t)

Φmod(t)
2cos(2πfct+Φout(t))

Out(t)
C(ej2πfT)

C(ej2πfT)

f
0

Overall
Phase Noise

Dominated
by VCO noise

Dominated by
Charge Pump noise

ffc

Output
Spectrum

n[k]

q[k]

Data[k]

Σ−Δ

G(f)

f
0

f
0

j f
1

Freq Phase

fo

G(f)

fo

Σ−Δ
Quantization

Noise

Filtered
Transmit

Data

PLL
Dynamics

fo

Inverse of PLL
Dynamics

P(ej2πfT)

Transmit
Filter

Pc(e
j2πfT)

1

B

18M.H. Perrott

The Issue of Mismatch

Mismatch between compensation filter and PLL forms
parasitic pole/zero pair
- Causes intersymbol interference (ISI)

C(ej2πfT)

C(ej2πfT)

n[k]

q[k]

Data[k]

Σ−Δ

G(f)

fo

fo

fofG

G(f)

fG

P(ej2πfT)

Pc(e
j2πfT)

Instantaneous
Frequency

>

19M.H. Perrott

Example of ISI Due to Mismatch

Frequency modulation is fairly insensitive to mismatch
- Phase modulation is much more sensitive

-23% Gain Error 0% Gain Error 25% Gain Error

Is There An Alternate Means of Increasing Data
Rate?

21M.H. Perrott

Classical Fractional-N Synthesizer Architecture

Use an accumulator to perform dithering operation
- Fractional input value fed into accumulator
- Carry out bit of accumulator fed into divider

PFD
Charge
Pump

Frac

out(t)e(t)

Accumulator

v(t)

N[k]

Loop
Filter

Divider

VCO

ref(t)

div(t)

M

M+1

Fout = M.F Fref

M.F

 Fref

M

Carry
Out

Kingsford-Smith
US Patent 3,928,813

1974 (filing date)

22M.H. Perrott

Integer-N Synthesizer Signals with Fout = 4.25Fref

Constant divide value of N = 4 leads to frequency
error
- Error pulse widths increase as phase error accumulates

N[k]

out(t)

div(t)

ref(t)

e(t)

4

5

23M.H. Perrott

N[k]

out(t)

div(t)

ref(t)

e(t)

4

5

Dithering allows average divide value of N = 4.25
- Reset phase error by periodically “swallowing” a VCO

cycle
Achieved by dividing by 5 every 4 reference cycles

Fractional-N Synthesizer Signals with Fout = 4.25Fref

24M.H. Perrott

Key Observations for Classical Fractional-N Dithering

The instantaneous phase error always remains less
than one VCO cycle
We can directly relate the phase error to the residue
of the accumulator that is providing the dithering

1 VCO
Period

N[k]

out(t)

div(t)

ref(t)

e(t)

phase
error

4

5

25M.H. Perrott

Accumulator Operation

Carry out bit is asserted when accumulator residue reaches
or surpasses its full scale value
Accumulator residue corresponds to instantaneous phase
error
- Increments by the fractional value input into the accumulator

residue[k]

carry_out[k]

frac[k] =.25

1-bit
M-bit

M-bit
frac[k]

Accumulator
carry_out[k]

residue[k]

clk(t)

26M.H. Perrott

The Issue of Spurious Tones

PFD error waveform is periodic
- Creates spurious tones in synthesizer output at lower

frequencies than the reference
- Ruins noise performance of the synthesizer

PFD
Charge
Pump

Nsd[m]

out(t)e(t)

Accumulator

v(t)
Loop
Filter

VCO

ref(t)

div(t) Divider

Carry Out

f
0 Fref

Se(f)Fractional
Spurs

27M.H. Perrott

The Phase Interpolation Technique

Leverage the fact that the phase error due to
fractional technique is predicted by the instantaneous
residue of the accumulator
- Cancel out phase error based on accumulator residue

PFD
Charge
Pump

Nsd[m]

out(t)e(t)

Accumulator

v(t)
Loop
Filter

VCO

ref(t)

div(t) Divider

Carry Out

D/A

Residue Kingsbury
US Patent 4,179,670

1978 (filing date)

28M.H. Perrott

The Problem With Phase Interpolation

Gain matching between PFD error and scaled D/A
output must be extremely precise
- Any mismatch will lead to spurious tones at PLL output

PFD
Charge
Pump

Nsd[m]

out(t)e(t)

Accumulator

v(t)
Loop
Filter

VCO

ref(t)

div(t) Divider

Carry Out

D/A

Residue

Matching issue prevented this technique from catching on

29M.H. Perrott

Examine Classical Fractional-N Signals

Goal: eliminate the fractional spurs

1

4

2

4

3

4

0

4

1

4

2

4

3

4

div(t)

ref(t)

e(t)

f
0 Fref

Se(f) Fractional
Spurs

30M.H. Perrott

Method 1: Vertical Compensation

“Fill in” pulses so that they are constant area
- Fractional spurs are eliminated!

1

4

2

4

3

4

0

4

1

4

2

4

3

4

e(t)

f
0 Fref

Se(f)

3

4

2

4

1

4

4

4

3

4

2

4

1

4

1

4

2

4

3

4

0

4

1

4

2

4

3

4

div(t)

ref(t)

e(t)

31M.H. Perrott

Method 2: Horizontal Compensation

Use constant width pulses of
varying height to achieve constant
area pulses
- Largely eliminates fractional spurs

1

4
3

4

2

4
2

4

3

4
1

4

0

4
4

4

1

4
3

4

2

4
2

4

3

4
1

4

e(t)

f
0 Fref

Se(f)

1

4

2

4

3

4

0

4

1

4

2

4

3

4

e(t)

3

4

2

4

1

4

4

4

3

4

2

4

1

4

1

4

2

4

3

4

0

4

1

4

2

4

3

4

div(t)

ref(t)

e(t)

32M.H. Perrott

Implementation of Horizontal Cancellation

We begin with the basic fractional-N structure

div(t)

ref(t)

Loop
Filter

out(t)

N[k]

Divider

PFD

Reg

ref(t)

div(t)

e
2
(t)

e
2
(t)

33M.H. Perrott

Add a Second PFD with Delayed Divider Signal

div(t)

ref(t)

delayed
div(t)

ref(t)

PFD

Loop
Filter

out(t)

N[k]

Divider

PFD

RegReg

ref(t)

div(t)

delayed
div(t)

e
1
(t)

e
2
(t)

e
1
(t)

e
2
(t)

34M.H. Perrott

Scale Error Pulses According to Accumulator Residue

div(t)

ref(t)

delayed
div(t)

ref(t)

PFD

Loop
Filter

out(t)

Divider

PFD

RegReg

1-ε[k]

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

 residue[k] = ε[k]

frac[k]
Accum

35M.H. Perrott

A Closer Look at Adding the Scaled Error Pulses

Goal – keep area constant for each pulse
- It’s easier to see this from a slightly different viewpoint

PFD

PFD 1-ε[k]

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

e(t)

e(t)

36M.H. Perrott

Alternate Viewpoint

The sum of scaled pulses can now be viewed as
horizontal cancellation

PFD

PFD 1-ε[k]

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

1

4
3

4

2

4
2

4

3

4
1

4

0

4
4

4

1

4
3

4

2

4
2

4

3

4
1

4

e(t)

e(t)

e(t)

37M.H. Perrott

Implementation of Pulse Scaling Operation

Direct output of a differential current DAC into two
charge pumps

Y. Dufour
US Patent 6,130,561

1998 (filing date)

Issue: practical non-idealities kill performance

PFD

PFD

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

Charge
Pump

Charge
Pump

1-ε[k]

2n

Residue[k]

Loop
Filter

38M.H. Perrott

Primary Non-idealities of Concern

Delay mismatch

DAC current
element mismatch

Incomplete Fractional
Spur Suppression

Proposed approach: dramatically reduce impact of these
non-idealities using mixed-signal processing techniques

PFD

PFD

ε[k]

ref(t)

div(t)

delayed
div(t)

Charge
Pump

Charge
Pump

1-ε[k]

2n

Residue[k]

Tvco+Δ

e(t)

f
0 Fref

Se(f)

39M.H. Perrott

Eliminate Impact of DAC Current Element Mismatch

Apply standard DAC noise shaping techniques to
shape mismatch noise to high frequencies
- See Baird and Fiez, TCAS II, Dec 1995

Allows up to 5% mismatch between unit elements
without degrading our desired performance targets

PFD

PFD

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

DAC
Mismatch
Shaping

Charge
Pump

Charge
Pump

1-ε[k]
ε[k]

2nn+1

Residue[k]

Loop
Filter

40M.H. Perrott

Eliminate Impact of Timing Mismatch

Swap paths between divider outputs in a pseudo-
random fashion
- Need to also swap ε[k] and 1-ε[k] sequence

Allows up to 5 ps mismatch without degrading our
desired performance targets

PFD

PFD

ε[k]

ref(t)

div(t)

delayed
div(t)

ε[k]e
1
(t)

(1-ε[k])e
2
(t)

DAC
Mismatch
Shaping

Charge
Pump

Charge
Pump

1-ε[k]
ε[k]

2nn+1

Residue[k]

Loop
Filter

Timing Mismatch

Compensation and

Re-synchronization

vco_out(t)

Tvco+Δ

41M.H. Perrott

Improve Horizontal Cancellation Performance

Sampling circuit accumulates error pulses before
passing their information to the loop filter
- A common analog trick used for decades

Eliminates issue of having non-square error pulse
shapes

PFD

PFD

ε[k]

ref(t)

div(t)

delayed
div(t)

DAC
Mismatch
Shaping

Charge
Pump

Charge
Pump

1-ε[k]
ε[k]

2nn+1

Residue[k]

Loop
Filter

Timing Mismatch

Compensation and

Re-synchronization

vco_out(t)

Sampler

f
0 Fref

Se(f)

Application:
A 1 MHz Bandwidth Fractional-N Frequency

Synthesizer Implementation

43M.H. Perrott

Design Goals

Output frequency: 3.6 GHz
- Allows dual-band output (1.8 GHz and 900 MHz)

Reference frequency: 50 MHz
- Allows low cost crystal reference

Bandwidth: 1 MHz
- Allows fast settling time and ~1 Mbit/s modulation rate

Noise: < -150 dBc/Hz at 20 MHz offset (3.6 GHz carrier)
- Phase noise at the 20 MHz frequency offset is very

challenging for GSM and DCS transmitters
GSM: -162 dBc/Hz at 20 MHz offset (900 MHz carrier)
DCS: -151 dBc/Hz at 20 MHz offset (1.8 GHz carrier)

Simultaneous achievement of the above bandwidth
and noise targets is very challenging

44M.H. Perrott

Evaluate Noise Performance with 1 MHz PLL BW

G(f) parameters
- 1 MHz BW, Type II, 2nd order rolloff, extra pole at 2.5 MHz

Required PLL noise parameters (with a few dB of margin)
- Output-referred charge pump noise: -105 dBc/Hz
- VCO noise: -155 dBc/Hz at 20 MHz offset (3.6 GHz carrier)

45M.H. Perrott

Calculated Phase Noise for Classical Fractional-N

2nd Order Σ−Δ

3rd Order Σ−Δ

-132 dBc/Hz at 20 MHz

-126 dBc/Hz at 20 MHz
These do NOT meet

our target of
-150 dBc/Hz at 20 MHz
(3.6 GHz carrier freq.)

46M.H. Perrott

Calculated Phase Noise for 7-bit PFD/DAC Synth

7-bit PFD/DAC

-155 dBc/Hz at 20 MHz !

47M.H. Perrott

Simulation of PFD/DAC Synthesizer using CppSim

Phase noise plots to follow: 40e6 time steps in 11 min

48M.H. Perrott

2nd Order Σ−Δ Fractional-N Performance

Replace accumulator with second order Σ−Δ modulator
Set residue into PFD/DAC equal to zero

PFD/DAC
Loop
Filter

out(t)

DividerRegReg

ref(t)

div(t)

 residue[k] = 0

frac[k]
2nd order
Σ−Δ

49M.H. Perrott

Calculate PLL Noise for 2nd Order Σ−Δ Synthesizer

2nd order Σ−Δ
- Click on 2nd order

S-D quantization
noise in tool

50M.H. Perrott

Simulated Phase Noise of 2nd Order Σ−Δ Synthesizer

PLL Design Assistant accurately models simulated noise!

-139

-119

-99

-79

-59

-39

S
pu

rs
 (

dB
c)

0.1 1 10

-180

-160

-140

-120

-100

-80

Frequency Offset from Carrier (MHz)

L(
f)

 (
dB

c/
H

z)
CppSim Simulated Phase Noise for Cell: wb_synth_sd2, Lib: WBSynth_Example, Sim: test.par

freqfilt

SD Noise
Detector Noise
VCO Noise
Total Noise

51M.H. Perrott

PFD/DAC
Loop
Filter

out(t)

DividerRegReg

ref(t)

div(t)

 residue[k]

frac[k]
Accumulator

7-bit PFD/DAC Synthesizer Performance

Use accumulator for dithering
Enable cancellation by connecting accumulator residue
to PFD/DAC

52M.H. Perrott

Calculate PLL Noise for 7-bit PFD/DAC Synthesizer

PFD/DAC
- Adjust S-D Quant.

Noise
Delay mismatch (11 ps)
- Adjust Detector noise

53M.H. Perrott

Simulated PLL Phase Noise of 7-bit PFD/DAC

PLL Design Assistant accurately models simulated noise!

-139

-129

-119

-109

-99

-89

79

-69

-59

-49

S
p
u
rs

 (
d
B

c
)

0.1 1 10

-180

-170

-160

-150

-140

-130

-120

-110

-100

-90

Frequency Offset from Carrier (MHz)

L
(f

)
(d

B
c
/H

z
)

CppSim Simulated Phase Noise for Cell: wb_synth, Lib: WBSynth_Example, Sim: test.par

freqfilt

SD Noise
Detector Noise
VCO Noise
Total Noise

54M.H. Perrott

Fabricated by
National

Semiconductor

Funded by
MARCO C2S2

Scott Meninger

A 1 MHz BW Fractional-N Frequency Synthesizer IC

Implements
proposed 7-bit
PFD/DAC
structure
- 0.18u CMOS
- Circuit details

published in
VLSI 2005

55M.H. Perrott

Measured Noise Suppression

Comparison of 7-bit PFD/DAC synthesizer with 2nd order ΣΔ
Synthesizer
Low freq noise ~2dB worse because of phase swapping
29dB quantization noise suppression measured at 10MHz !

56M.H. Perrott

A Highly Digital Implementation of a GMSK Transmitter

A fractional-N frequency synthesizer provides highly
accurate phase/frequency modulation capability
- Multiple carrier frequencies easily achieved with digital

frequency division
- N-bit PFD/DAC extends achievable data rate for a given

noise performance (at higher frequency offsets)

PFD/DAC
Loop
Filter

out(t)

DividerRegReg

ref(t)

div(t)

 residue[k] = ε[k]

Accum

0

12 2
50 MHz

Digital

GMSK

Modulator

Carrier Frequency

1.8 GHz/900 MHz

3.6 GHz, 1 MHz BW, 7-bit PFD/DAC SynthesizerReference Band Select

57M.H. Perrott

GMSK Eye Diagrams at 271 kbit/s (~900 MHz Carrier)

CppSim simulation
- 100e6 points: < 44 min

Measured
- HP 89441 Vec. Analyzer

Close agreement between simulated and measured results!

58M.H. Perrott

GMSK Spectra Plots at 271 kbit/s (~900 MHz Carrier)

CppSim simulation
- 100e6 points: < 44 min

Measured
- HP 8563E

Spectrum Analyzer

59M.H. Perrott

GMSK Eye Diagrams at 500 kbit/s (~900 MHz Carrier)

Measured
- HP 89441 Vec. Analyzer

CppSim simulation
- 100e6 points: < 44 min

60M.H. Perrott

GMSK Spectra Plots at 500 kbit/s (~900 MHz Carrier)

Measured
- HP 8563E

Spectrum Analyzer

CppSim simulation
- 100e6 points: < 44 min

61M.H. Perrott

GMSK Eye Diagrams at 1 Mbit/s (~900 MHz Carrier)

Measured
- HP 89441 Vec. Analyzer

CppSim simulation
- 100e6 points: < 44 min

62M.H. Perrott

GMSK Spectra Plots at 1 Mbit/s (~900 MHz Carrier)

Measured
- HP 8563E

Spectrum Analyzer

CppSim simulation
- 100e6 points: < 44 min

63M.H. Perrott

Conclusions

Fractional-N frequency synthesizers can achieve
dramatic improvement in achieving high PLL
bandwidth with excellent noise performance
- The PFD/DAC approach presented here is only one of

many possibilities to achieve this goal
Design and simulation methodologies are invaluable
for achieving better performance
- Analytical modeling of noise can be quite accurate

The PLL Design Assistant can be useful in this area
- Behavioral simulation can be used to verify analytical

models
CppSim offers a convenient and fast framework for this

Simulation of Frequency Synthesizers

65M.H. Perrott

Impact of Synthesizer Noise

Noise must be low to
meet transmit mask
requirement

Noise must be low to meet
receiver SNR and blocking
requirements

Channel
Select

Digital
Baseband

D/A

Channel
Select

Digital
Baseband

A/D
RF Out RF In

Wireless Transmitter Wireless Receiver

Frequency
Synthesizer

Frequency
Synthesizer

Transmitter
Channel

f

Synthesizer
Noise

Receiver
Channel

f

Synthesizer
Noise

66M.H. Perrott

Impact of Synthesizer Dynamic Behavior

Settling time must be fast to support channel hopping
requirements

Channel
Select

Digital
Baseband

D/A

Channel
Select

Digital
Baseband

A/D
RF Out RF In

Wireless Transmitter Wireless Receiver

Frequency
Synthesizer

Frequency
Synthesizer

Transmitter
Channel

f
Receiver
Channel

f

67M.H. Perrott

What Do We Want From a Simulator?

Accurate estimation of synthesizer performance
- Noise spectral density
- Dynamic behavior

Fast computation to allow use in IC design flow
Simple to use
- C++, Verilog, Matlab

68M.H. Perrott

Problems with Current
Simulators

69M.H. Perrott

Problem 1: Classical Simulators are Slow

High output frequency High sample rate
Long time constants Long time span for transients

Large number of simulation time steps required

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−Δ
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

10-100 kHz

M
M+1

1-10 GHz

70M.H. Perrott

Problem 2: Classical Simulators Are Inaccurate

PFD output is not bandlimited
- PFD output must be simulated in discrete-time

Phase error is inaccurately simulated
Non-periodic dithering of divider complicates matters

PFD Charge
Pump

Nsd[m]

out(t)e(t)

Σ−Δ
Modulator

v(t)

N[m]

Loop
Filter

Divider
VCO

ref(t)

div(t)

M
M+1

71M.H. Perrott

Example: Classical Constant-Time Step Method

Directly sample the PFD output according to the
simulation sample period
- Simple, fast, readily implemented in Matlab, Verilog, C++

Issue – quantization noise is introduced
- This noise overwhelms the PLL noise sources we are

trying to simulate

PFD
e(t)ref(t)

e(t)
t

e[n]
n

Sample Period = Ts(Johns and Martin,
Analog Integrated Circuit Design)

72M.H. Perrott

Alternative: Event Driven Simulation

Set simulation time samples at PFD edges
- Sample rate can be lowered to edge rate!

PFD
e(t)ref(t)

Sample Period Non-constant

e(t)
t

e[n]
n

Tk Tk+1
(Smedt et al, CICC ’98,
Demir et al, CICC ’94,
Hinz et al, Circuits and Systems ’00)

73M.H. Perrott

Issue: Simulation of Filter Blocks is Complicated

Filtering computation must deal with non-constant
time step
- Closed-form calculation is tedious
- Iterative computation is time-consuming

Complicates Verilog, Matlab, or C++ implementation

Sample Period Non-constant

e(t)
e(t)

t

e[n]
n

Tk Tk+1

t
Loop Filter

h(t)

v(t)

74M.H. Perrott

Is there a better way?

75M.H. Perrott

Proposed Approach: Use Constant Time Step

Straightforward CT to DT transformation of filter blocks
- Use bilinear transform or impulse invariance methods

Overall computation framework is fast and simple
- Simulator can be based on Verilog, Matlab, C++

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

Ts

76M.H. Perrott

Problem: Quantization Noise at PFD Output

Edge locations of PFD output are quantized
- Resolution set by time step: Ts

Reduction of Ts leads to long simulation times

e(t)

t
Loop Filter

h(t)

v(t)
e(t)

t

1

0

εTs Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

77M.H. Perrott

Proposed Approach: View as Series of Pulses

Area of each pulse set by edge locations
Key observations:
- Pulses look like impulses to loop filter
- Impulses are parameterized by their area and time offset

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

1

0

1

0

εTs Ts/2

area = εarea = Ts/2

e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

78M.H. Perrott

Proposed Method

Set e[n] samples according to pulse areas
- Leads to very accurate results

Mathematical analysis given in paper
- Fast computation

e(t)

t
Loop Filter

h(t)

v(t)

e(t)

e(t)
t

t

e[n]
n

1

0

1

0

1

0

εTs Ts/2

area = εarea = Ts/2

ε/Ts1/2
e[n]

n

Loop Filter

Ts v[n]
h[n] = Ts h(Tsn)

79M.H. Perrott

Implementation Overview

Compute transition values in VCO block

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

(Assume VCO output
is a square-wave
for this discussion)

80M.H. Perrott

Calculation of Transition Values

Model VCO based on its phase

v[n]

VCO

out[n]

π

Φvco(t)

t

εk

out[n]

n

81M.H. Perrott

Calculation of Transition Values

Determine output transition time according to phase

v[n]

VCO

out[n]

π

Φvco(t)

t

Φ[k]

Φ[k-1]

out(t)

εk

π
out[n]

n

82M.H. Perrott

Calculation of Transition Values

Use first order interpolation to determine transition value

v[n]

VCO

out[n]

π

Φvco(t)

tεk Φ[k]-Φ[k-1]
π-Φ[k-1]

=

Φ[k]

Φ[k-1]

out(t)

out[n] n

εk

π

2 -1

out[n]

εk

n

83M.H. Perrott

Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

84M.H. Perrott

Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

85M.H. Perrott

Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output
Compute Filter output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

86M.H. Perrott

Implementation Overview

Compute transition values in VCO block
Pass transition information in Divider block
Compute transition values for PFD output
Compute Filter output

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

87M.H. Perrott

Computation of PFD Output

Goal: compute transition information in terms of
primitive blocks (registers, XOR gates, etc.)
- Allows straightforward implementation in simulator
- Accommodates a rich variety of PFD structures

ref[n]

n

n

div[n]

e[n]

n

S

RD
Q
Q

D
Q
Q

D
Q
Q

D
Q
Q

88M.H. Perrott

Implementation of Primitives - Registers

Relevant timing information is contained in the clock
signal
- Transfer transition information from the clock to the

register output- Complement output using a sign change

D
Q
Q

clk[n] n

out[n] n

n

clk
out

out

out[n]

89M.H. Perrott

Implementation of Primitives – Logic Gates

Relevant timing information contained in the input
that causes the output to transition
- Determine which input causes the transition, then pass

its transition value to the output

a[n] n

b[n] n

n

a
b

out

out[n]

90M.H. Perrott

Issue: Must Observe Protocol When Adding Noise

Divider and PFD blocks operate on a strict protocol for
their incoming signals
- Values other than 1 or -1 are interpreted as edges
- Example: inputting noise at divider input breaks protocol!

Add noise only at places where signal is “analog”
- PFD, charge pump, and loop filter outputs are fine

PFD Charge
Pump

Nsd[n]

out[n]e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

Noise

91M.H. Perrott

Can we speed the
simulation up further?

92M.H. Perrott

out(t)v(t)

div(t)

N[m]

Divider
VCO

N[m]
cyclesN[m-1]

cycles

div(t)

out(t)

Time step of simulation
typically set by VCO output

Small time steps means long
simulation runs

Divider output often 100
times lower in frequency

Sample Rate Set by Highest Frequency Signal

Can we sample according to divider output?

93M.H. Perrott

Divider Output Can Be Computed from VCO Phase

Key Idea: Model VCO and Divider using Phase

v(t)

VCO

Kv
s

Φvco(t)out(t)v(t)

div(t)

N[m]

Divider
div(t)

Divider

VCO

2πN[m]
N[m]
cyclesN[m-1]

cycles 2πN[m-1]

Φvco(t)

t

div(t)div(t)

out(t)

(Van Halen et al, Circuits and Systems ’96)

94M.H. Perrott

Combine VCO and Divider Blocks

PFD Charge
Pump

Nsd[n]

e[n]

Σ−Δ
Modulator

v[n]

N[n]

Loop
Filter

Divider
VCO

ref[n]

div[n]

2πN[m]

Φvco(t)

t

Φ[k]

Φ[k-1]

div(t)

div[n] n
εk

εk

Nπ

Transient simulations run 2 orders of magnitude faster!

Compute divider output using
first order interpolation of VCO
phase

95M.H. Perrott

Does it really work?

96M.H. Perrott

The CppSim Simulator

Blocks are implemented with C/C++ code
- High computation speed
- Complex block descriptions

Users enter designs in graphical form using Cadence
or Sue2 schematic capture
- System analysis and transistor level analysis are

possible in the same CAD framework
Resulting signals are viewed in Matlab or CppSimView
- Powerful post-processing and viewing capability

Simulation package freely downloadable at
http://www.cppsim.com

97M.H. Perrott

The Sue2 and CppSimView Environment

98M.H. Perrott

Experimental Prototype to Verify Approach

1.8 - 1.9 GHz

0.6 μ CMOS IC

Digital Σ−Δ
Modulator

PFD Out
20 MHz

64 Modulus
Divider

Loop
Filter

2
Frequency

Select

Perrott et al
JSSC, Dec 97

99M.H. Perrott

Simulation Results - Dynamic Behavior

Simulation time: 260 thousand time steps in 5 seconds
on a 650 MHz Pentium III Laptop (custom C++ simulator)

Nsd (Input to Σ−Δ Modulator)

0 100 200 300 400 500 600 700

Synthesizer Output Frequency (MHz)

Fr
eq

ue
nc

y
(M

H
z)

Time (Micro Seconds)

97
96
95
94
93
92
91

1940
1920
1900
1880
1860
1840
1820

D
iv

id
e

Va
lu

e

100M.H. Perrott

Noise Sources Included in Simulation

Dominant noise sources in synthesizer
- Quantization noise of Σ−Δ (produced by Σ−Δ block)
- Charge pump noise (calculated from Hspice)
- VCO noise (input-referred – calculated from measurement)

PFD
ref(t)

div(t)

Loop
Filter v(t)

1.85e-25
A2/Hz 3.25e-16

V2/Hz

1.2e-24
A2/Hz1.5 μA

1.5 μA

f

Σ−Δ
Quantization

Noise

Charge
Pump
Noise

VCO
Noise

(Input-referred)

101M.H. Perrott

Measured Synthesizer Noise Performance

Measured
VCO Noise
(open loop)

(closed loop)

Measured Overall
Synthesizer Noise

Noise Floor of
Measurement

System

102M.H. Perrott

Simulated Synthesizer Noise Performance
L(

f)
(d

B
c/

H
z)

-60
-70
-80
-90

-100
-110
-120
-130
-140
-150

Simulated Spectrum: 1/Ts = 20*(reference frequency)

100 kHz25 kHz 1 MHz 10 MHz 25 MHz

Measured Noise
Simulated Noise

Simulated results compare quite well to measured!
Simulation time: 5 million time steps in 80 seconds

103M.H. Perrott

Conclusion

Phase locked loop circuits can be quickly and
accurately simulated
- Accuracy achieved with area conservation principle
- Fast computation by combining VCO and Divider blocks

A variety of simulation frameworks can be used
- C++, Matlab, Verilog
- Circuit primitives are supported

Noise and dynamic performance of fractional-N
frequency synthesizers can be investigated at system level

	Short Course On �Phase-Locked Loops and Their Applications� Day 3, AM Lecture��Advanced Analog Synthesizer Techniques
	Outline
	Constant Envelope Modulation
	Frequency Shift Keying
	A More Detailed Model
	MSK Modulation
	A More Convenient Model for Analysis
	Impact of Sending a Single Data Impulse
	Include Influence of Transmit Filter
	Gaussian Minimum Shift Keying
	Modeling The Impact of VCO Phase Modulation
	Relationship Between Sine Wave Output and its Phase
	Relationship Between Output and Phase Spectra
	Impact of Phase Modulation on the Output Spectrum
	Leveraging a Fractional-N Synth for Phase Modulation
	Linearized Model of Fractional-N Modulator
	Improving the Data Rate/Noise Tradeoff
	The Issue of Mismatch
	Example of ISI Due to Mismatch
	Is There An Alternate Means of Increasing Data Rate?
	Classical Fractional-N Synthesizer Architecture
	Integer-N Synthesizer Signals with Fout = 4.25Fref
	Fractional-N Synthesizer Signals with Fout = 4.25Fref
	Key Observations for Classical Fractional-N Dithering
	Accumulator Operation
	The Issue of Spurious Tones
	The Phase Interpolation Technique
	The Problem With Phase Interpolation
	Examine Classical Fractional-N Signals
	Method 1: Vertical Compensation
	Method 2: Horizontal Compensation
	Implementation of Horizontal Cancellation
	Add a Second PFD with Delayed Divider Signal
	Scale Error Pulses According to Accumulator Residue
	A Closer Look at Adding the Scaled Error Pulses
	Alternate Viewpoint
	Implementation of Pulse Scaling Operation
	Primary Non-idealities of Concern
	Eliminate Impact of DAC Current Element Mismatch
	Eliminate Impact of Timing Mismatch
	Improve Horizontal Cancellation Performance
	Application:�A 1 MHz Bandwidth Fractional-N Frequency Synthesizer Implementation
	Design Goals
	Evaluate Noise Performance with 1 MHz PLL BW
	Calculated Phase Noise for Classical Fractional-N
	Calculated Phase Noise for 7-bit PFD/DAC Synth
	Simulation of PFD/DAC Synthesizer using CppSim
	2nd Order S-D Fractional-N Performance
	Calculate PLL Noise for 2nd Order S-D Synthesizer
	Simulated Phase Noise of 2nd Order S-D Synthesizer
	7-bit PFD/DAC Synthesizer Performance
	Calculate PLL Noise for 7-bit PFD/DAC Synthesizer
	Simulated PLL Phase Noise of 7-bit PFD/DAC
	A 1 MHz BW Fractional-N Frequency Synthesizer IC
	Measured Noise Suppression
	A Highly Digital Implementation of a GMSK Transmitter
	GMSK Eye Diagrams at 271 kbit/s (~900 MHz Carrier)
	GMSK Spectra Plots at 271 kbit/s (~900 MHz Carrier)
	GMSK Eye Diagrams at 500 kbit/s (~900 MHz Carrier)
	GMSK Spectra Plots at 500 kbit/s (~900 MHz Carrier)
	GMSK Eye Diagrams at 1 Mbit/s (~900 MHz Carrier)
	GMSK Spectra Plots at 1 Mbit/s (~900 MHz Carrier)
	Conclusions
	Simulation of Frequency Synthesizers
	What Do We Want From a Simulator?
	Problems with Current Simulators
	Example: Classical Constant-Time Step Method
	Alternative: Event Driven Simulation
	Issue: Simulation of Filter Blocks is Complicated
	Is there a better way?
	Proposed Approach: Use Constant Time Step
	Problem: Quantization Noise at PFD Output
	Proposed Approach: View as Series of Pulses
	Proposed Method
	Implementation Overview
	Calculation of Transition Values
	Calculation of Transition Values
	Calculation of Transition Values
	Implementation Overview
	Implementation Overview
	Implementation Overview
	Implementation Overview
	Computation of PFD Output
	Implementation of Primitives - Registers
	Implementation of Primitives – Logic Gates
	Issue: Must Observe Protocol When Adding Noise
	Sample Rate Set by Highest Frequency Signal
	Divider Output Can Be Computed from VCO Phase
	Combine VCO and Divider Blocks
	The CppSim Simulator
	The Sue2 and CppSimView Environment
	Experimental Prototype to Verify Approach
	Simulation Results - Dynamic Behavior
	Noise Sources Included in Simulation
	Measured Synthesizer Noise Performance
	Simulated Synthesizer Noise Performance
	Conclusion

