Short Course On Phase-Locked Loops and Their Applications Day 4, AM Lecture

Digital Frequency Synthesizers

Michael Perrott August 14, 2008

Copyright © 2008 by Michael H. Perrott All rights reserved.

Why Are Digital Phase-Locked Loops Interesting?

- PLLs are needed for a wide range of applications
 - Communication systems (both wireless and wireline)
 - Digital processors (to achieve GHz clocks)
- Performance is important
 - Phase noise can limit wireless transceiver performance
 - Jitter can be a problem for digital processors
- The standard analog PLL implementation is problematic in many applications
 - Analog building blocks on a mostly digital chip pose design and verification challenges
 - The cost of implementation is becoming too high ...

Can digital phase-locked loops offer excellent performance with a lower cost of implementation?

Integer-N Frequency Synthesizers

- Use digital counter structure to divide VCO frequency
 - Constraint: must divide by integer values
- Use PLL to synchronize reference and divider output

Output frequency is digitally controlled

M.H. Perrott

Fractional-N Frequency Synthesizers

Dither divide value to achieve fractional divide values

PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved

The Issue of Quantization Noise

M.H. Perrott

Striving for a Better PLL Implementation

Analog Phase Detection

Pulse width is formed according to phase difference between two signals

Average of pulsed waveform is applied to VCO input

Tradeoffs of Analog Approach

Benefit: average of pulsed output is a continuous, linear function of phase error

Issue: analog loop filter implementation is undesirable M.H. Perrott

Issues with Analog Loop Filter

- Charge pump: output resistance, mismatch
- Filter caps: leakage current, large area

Going Digital ...

- Digital loop filter: compact area, insensitive to leakage
- Challenges:
 - Time-to-Digital Converter (TDC)
 - Digitally-Controlled Oscillator (DCO)

M.H. Perrott

Time-to-Digital Conversion

Classical Time-to-Digital Converter

- Resolution set by a "Single Delay Chain" structure
 - Phase error is measured with delays and registers
- Corresponds to a flash architecture

M.H. Perrott

Impact of Limited Resolution and Delay Mismatch

Limit cycles due to limited resolution (unless high ref noise)

Fractional-N PLL

M.H. Perrott **Fractional spurs due to non-linearity from delay mismatch**

Modeling of TDC

- Phase error converted to time error by scale factor: $T/2\pi$
- TDC introduces quantization error: t_a[k]

TDC gain set by average delay per step: Δt_{del}

How Do We Improve Performance?

Two Key Issues: • TDC resolution • Mismatch

Improve Resolution with Vernier Delay Technique

M.H. Perrott

Issues with Vernier Approach

- Mismatch issues are more severe than the single delay chain TDC
 - Reduced delay is formed as *difference* of two delays
- Large measurement range requires large area
 - Initial PLL frequency acquisition may require a large range

Two-Step TDC Architecture Allows Area Reduction

Two-Step TDC Using Time Amplification

M.H. Perrott

Leveraging Metastability to Create a Time Amplifier

Simplified view of: Abas, et al., Electronic Letters, Nov 2002 (note that actual implementation uses SR latch)

- Metastability leads to progressively slower output transitions as setup time on latch is encroached upon
- Time difference at input is amplified at output

Interpolating time-to-digital converter

- Interpolate between edges to achieve fine resolution
- Cyclic approach can also be used for large range

An Oscillator-Based TDC

Output e[k] corresponds to the number of oscillator edges that occur during the measurement time window

Advantages

Extremely large range can be achieved with compact area

Quantization noise is scrambled across measurements
M.H. Perrott

A Closer Look at Quantization Noise Scrambling

- Quantization error occurs at beginning and end of each measurement interval
- As a rough approximation, assume error is uncorrelated between measurements

M.H. Perrott Averaging of measurements improves effective resolution

Deterministic quantizer error vs. scrambled error

- Deterministic TDC do not provide inherent scrambling
- For oversampling benefit, *TDC error must be scrambled!*
- Some systems provide input scrambling ($\Delta\Sigma$ fractional-N PLL), while some others do not (integer-N PLL)

Proposed GRO TDC Structure

A Gated Ring Oscillator (GRO) TDC

Enable ring oscillator only during measurement intervals

- Hold the state of the oscillator between measurements
- Quantization error becomes first order noise shaped!
 - e[k] = Phase Error[k] + q[k] q[k-1]
- **M.H.** Perrott Averaging dramatically improves resolution!

Improve Resolution By Using All Oscillator Phases

Raw resolution is set by inverter delay

M.H. Perrott ffective resolution is dramatically improved by averaging

GRO TDC Also Shapes Delay Mismatch

different measurements

Mismatch between delay elements is first order shaped!

Simple gated ring oscillator inverter-based core

GRO Prototype

Measured GRO Results Confirm Noise Shaping

N

Measured deadzone behavior of inverter-based GRO

- Deadzones were caused by errors in gating the oscillator
- GRO "injection locked" to an integer ratio of F_S
- Behavior occurred for almost all integer boundaries, and some fractional values as well
- Noise shaping benefit was limited by this gating error

The issue of gating non-idealities...

- Oscillator does not stop and start instantly
- Actual phase trajectory deviates from ideal trajectory by a time defined as "T_{skew}"

Interrupted transition causes charge redistribution

- Charge redistribution depends on when the transition is stopped
- Positive and negative transitions are not perfectly symmetric
- Gating skew (T_{skew}) then depends on GRO phase (θ_{GRO}) when Enable transitions low

M.H. Perrott

Cartoon depicting the error from individual stages

- Only one stage in transition at a time
- T_{skew} is the sum of error from each of the individual stages
- Periodic with 2T_q due to positive and negative transition asymmetry

Next Generation GRO: Multi-path oscillator concept

- Use multiple inputs for each delay element instead of one
- Allow each stage to optimally begin its transition based on information from the entire GRO phase state
- Key design issue is to ensure primary mode of oscillation
Multi-path inverter core

Proposed multi-path gated ring oscillator

Hsu, Straayer, Perrott ISSCC 2008

- Oscillation frequency near 2GHz with 47 stages...
- Reduces effective delay per stage by a factor of 5-6!
- Represents a factor of 2-3 improvement compared to previous multi-path oscillators

A simple measurement approach...

- 2 counters per stage * 47 stages = 94 counters each at 2GHz
- Power consumption for these counters is unreasonable

Need a more efficient way to measure the multi-path GRO

Phase-based measurement for a simple GRO

- Simple logic provides map from GRO output state to phase
- Transition sequence is predictable, unambiguous

Accounting for phase wrapping...

- Calculate phase from:
 - A single counter for coarse phase information
 - GRO output state for fine phase residual
 - **1** counter and N registers \rightarrow much more efficient

Accuracy considerations...

Counter and registers need to have the same state
Cannot allow counters to double-count a single transition

De-glitch circuits to ensure accurate measurements

Key issue with scheme for an multi-path GRO...

- More than one delay element output is logically uncertain
- Transition sequence is unpredictable and ambiguous
- Cannot map from entire GRO output state to phase *M.H. Perrott*

Restoring the predictable relationship...

Calculate phase contribution from each cell independently
 Transition sequence within each cell is now predictable
 M.H. Perrott

Prototype 0.13µm CMOS multi-path GRO-TDC

- Two implemented versions:
 - 8-bit, 500Msps
 - 11-bit, 100Msps version

2-21mW power consumption depending on input duty cycle

Measured noise-shaping of multi-path GRO

- Data collected at 50Msps
- More than 20dB of noise-shaping benefit
- 80fs_{rms} integrated error from 2kHz-1MHz
- Floor primarily limited by 1/f noise (up to 0.5-1MHz)

Measured deadzone behavior for multi-path GRO

- Only deadzones for outputs that are multiples of 2N
 - **94, 188, 282, etc.**
 - No deadzones for other even or odd integers, fractional output
 - Size of deadzone is reduced by 10x

Revised gating skew cartoon for the multi-path GRO

- At least 13 stages in transition at a time
 - Most of the mismatch from positive and negative transitions is cancelled
- T_{skew} is the *average* of error from each of the individual stages
 - GRO phase trajectory is determined by many stages, not just one

Sampling Frequency	<100 MHz
Raw delay resolution	6ps
Effective resolution	1ps @ 50Msps
Integrated noise	80fs-rms, 2kHz-1MHz
Dynamic range	95dB, 1MHz BW
Power	2.2-21mW (<4mW typical)
Area	157 x 258μm
Technology	0.13μm CMOS

Summary of Time to Digital Conversion

- Key performance metrics are
 - Resolution: want low quantization noise
 - Mismatch: want high linearity
 - Power and area: want long battery life, low cost
- Many structures have been introduced
 - Classical, Vernier, Two-Step, Time Amplifiers, Re-cycling, Gated Ring Oscillator
- Comparable to ADCs but suffers from lack of "time memory element"
 - Cyclic conversion and pipeline structures have not been achieved
- A very promising research area!

Digitally-Controlled Oscillators

A Straightforward Approach for Achieving a DCO

- Use a DAC to control a conventional LC oscillator
 - Allows the use of an existing VCO within a digital PLL
 - Can be applied across a broad range of IC processes

A Much More Digital Implementation

- Adjust frequency in an LC oscillator by switching in a variable number of small capacitors
 - Most effective for CMOS processes of 0.13u and below

Leveraging Segmentation in Switched Capacitor DCO

- Similar in design as *segmented* capacitor DAC structures
 - Binary array: efficient control, but may lack monotonicity
 - Unit element array: monotonic, but complex control
- Coarse and fine control segmentation of DCO
 - Coarse control: active only during initial frequency tuning (leverage binary array)
 - Fine control: controlled by PLL feedback (leverage unit element array to guarantee monotonicity)

Leveraging Dithering for Fine Control of DCO

- Increase resolution by $\Sigma \Delta$ dithering of fine cap array
- Reduce noise from dithering by
 - Using small unit caps in the fine cap array
 - **Increasing the dithering frequency (defined as 1/T_c)**

• We will assume $1/T_c = M/T$ (i.e. M times reference frequency)

Time-Domain Modeling of the DCO

- Input to the DCO is supplied by the loop filter
 - Clocked at 1/T (i.e., reference frequency)
- Switched capacitors are dithered by $\Sigma \Delta$ at a higher rate
 - Clocked at $1/T_c = M/T$
 - Held at a given setting for duration T_c
- Fine cap element value determines K_v of VCO
 - Units of K_v are Hz/unit cap

Frequency Domain Modeling of DCO

Upsampler and zero-order hold correspond to discrete and continuous-time *sinc* functions, respectively

• $\Sigma - \Delta$ has signal and noise transfer functions ($H_{stf}(z)$, $H_{ntf}(z)$)

Note: var(q_{raw}[k]) = 1/12 (uniformly distributed from 0 to 1)
M.H. Perrott

Simplification of the DCO Model

Focus on low frequencies for calculations to follow

- Assume sinc functions are relatively flat at the low frequencies of interest
 - Upsampler is approximated as a gain of M
 - Zero-order hold is approximated as a gain of T_c
- Assume $H_{stf}(z) = 1$
 - True for $\Sigma \Delta$ structures such as MASH (ignoring delays)

Spectral Density Calculations

$$CT \rightarrow CT \xrightarrow{x(t)} H(f) \xrightarrow{y(t)} H(f)$$

$$DT \rightarrow DT \xrightarrow{x[k]} H(e^{j2\pi fT}) \xrightarrow{y[k]} H(f) \xrightarrow{y(t)} H(f) \xrightarrow{$$

• CT \rightarrow CT $\qquad S_y(f) = |H(f)|^2 S_x(f)$

• DT \rightarrow DT $S_y(e^{j2\pi fT}) = |H(e^{j2\pi fT})|^2 S_x(e^{j2\pi fT})$

DT
$$\rightarrow$$
 CT $S_y(f) = \frac{1}{T} |H(f)|^2 S_x(e^{j2\pi fT})$

Calculation of Quantization Noise from Cap Dithering

DT to CT spectral calculation:

$$S_{\Phi_{out}}(f)\Big|_{\text{dco,quant}} = \frac{1}{T_c} \left| T_c \frac{2\pi K_v}{j2\pi f} \right|^2 \left| H_{ntf}(e^{j2\pi fT_c}) \right|^2 S_{q_{raw}}(f)$$
$$= T_c \left| \frac{K_v}{f} \right|^2 \left| H_{ntf}(e^{j2\pi fT_c}) \right|^2 \frac{1}{12}$$

 $S_{q_{raw}}(f) = 1/12 \text{ since } q_{raw}[k] \text{ uniformly distributed from 0 to 1}$ $H_{ntf}(z) \text{ is often } 1-z^1 \text{ (first order) or } (1-z^1)^2 \text{ (second order)}$

Example Calculation for DCO Quantization Noise

- Assumptions (Out freq = 3.6 GHz)
 - **Dithering frequency is 200 MHz (i.e., 1/T_c = 200e6)**
 - $\Sigma \Delta$ has first order shaping (i.e., $H_{ntf}(z) = 1 z^{-1}$)
 - Fine cap array yields 12 kHz/unit cap (i.e., $K_v = 12e3$)

$$S_{\Phi_{out}}(f)\Big|_{\text{dco,quant}} = T_c \left|\frac{K_v}{f}\right|^2 \left|H_{ntf}(e^{j2\pi fT_c})\right|^2 \frac{1}{12}$$
$$= \frac{1}{200e6} \left|\frac{12e3}{f}\right|^2 \left|1 - e^{j2\pi f/200e6}\right|^2 \frac{1}{12}$$

• At a frequency offset of *f* = 20 MHz:

$$= \frac{1}{200e6} \left| \frac{12e3}{20e6} \right|^2 \left| 1 - e^{j2\pi 1/10} \right|^2 \frac{1}{12} = 5.73 \cdot 10^{-17}$$

 $10\log(5.73\cdot10^{-17}) = -162.4 \ dBc/Hz$ (at 20 MHz offset)

Below the phase noise (-153 dBc/Hz at 20 MHz) in the example

Further Simplification of DCO Model

Overall Digital PLL Model

TDC and DCO-referred noise influence overall phase noise according to associated transfer functions to output

Calculations involve both discrete and continuous time

Key Transfer Functions

TDC-referred noise

$$\frac{\Phi_{out}}{t_q} = \frac{(1/\Delta t_{del})H(e^{j2\pi fT})T2\pi K_v/(2\pi jf)}{1+(1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$

DCO-referred noise

$$\frac{\Phi_{out}}{\Phi_n} = \frac{1}{1 + (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$

Introduce a Parameterizing Function

Define open loop transfer function A(f) as:

$$A(f) = (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)$$

Define closed loop parameterizing function G(f) as:

$$G(f) = \frac{A(f)}{1 + A(f)}$$

Note: G(f) is a lowpass filter with DC gain = 1

Transfer Function Parameterization Calculations

TDC-referred noise

$$\frac{\Phi_{out}}{t_q} = \frac{(1/\Delta t_{del})H(e^{j2\pi fT})T2\pi K_v/(2\pi jf)}{1+(1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$
$$= \frac{2\pi NA(f)}{1+A(f)} = 2\pi NG(f)$$

DCO-referred noise

$$\frac{\Phi_{out}}{\Phi_n} = \frac{1}{1 + (1/\Delta t_{del})H(e^{j2\pi fT})TK_v/(2\pi jf)(1/N)}$$
$$= \frac{1}{1 + A(f)} = \frac{1 + A(f) - A(f)}{1 + A(f)} = \frac{1 - G(f)}{1 - G(f)}$$

Key Observations

$$\frac{\Psi_{out}}{t_q} = 2\pi NG(f)$$

Lowpass with a DC gain of $2\pi N$

DCO-referred noise

$$\frac{\Phi_{out}}{\Phi_n} = 1 - G(f)$$

Highpass with a high frequency gain of 1

How do we calculate the output phase noise?

Phase Noise Calculation

TDC noise

- DT to CT calculation
- Dominates PLL phase noise at low frequency offsets

DCO noise

- CT to CT calculation
- Dominates PLL phase noise at high frequency offsets

Impact of PLL Bandwidth

System Level Design
Closed Loop PLL Design Approach

- Directly design G(f) by examining impact of its specifications on phase noise (and settling time)
- Solve for A(f) that will achieve desired G(f)

Implemented in PLL Design Assistant Software

http://www.cppsim.com

PLL Design Assistant assumes continuous-time open loop transfer function A_{calc}(s):

$$A_{calc}(s) = rac{K}{s^{type}} rac{1+s/w_z}{1+s/w_p}$$

- Above parameters are calculated based on the desired closed loop PLL bandwidth, type, and order of rolloff (which specify G(s))
- For 100 kHz bandwidth, type = 2, 2nd order rolloff, we have:
 - $K = 3.0 \times 10^{10}$
 - $w_p = 2\pi (153 \text{ kHz})$
 - $w_z = 2\pi (10 \text{ kHz})$

Continuous-Time Approximation of Digital PLL

At low frequencies (i.e., |sT| << 1), we can use the first order term of a Taylor series expansion to approximate

$$z^{-1} = e^{-sT} \approx 1 - sT$$

Resulting continuous-time approximation of open loop transfer function of digital PLL:

$$A(s) pprox rac{T}{\Delta t_{del}} rac{K_v}{N} rac{1}{s} H(z) \Big|_{z^{-1} pprox 1 - sT}$$

Applying PLL Design Assistant to Digital PLL Design

Given the continuous-time approximation of A(s), we then leverage the PLL Design Assistant calculation:

$$A(s) = A_{calc}(s)$$

Also note that:

$$z^{-1} = 1 - sT \Rightarrow s = \frac{1 - z^{-1}}{T}$$

Given the above, we obtain:

$$\frac{T}{\Delta t_{del}} \frac{K_v}{N} \frac{1}{s} H(z) \Big|_{s = \frac{1-z^{-1}}{T}} = \frac{K}{s^{type}} \frac{1+s/w_z}{1+s/w_p} \Big|_{s = \frac{1-z^{-1}}{T}}$$

$$\Rightarrow H(z) = \frac{\Delta t_{del}}{T} \frac{N}{K_v} \left(\frac{K}{s^{type-1}}\right) \frac{1 + s/w_z}{1 + s/w_p} \bigg|_{s = \frac{1-z^{-1}}{T}}$$

Simplified Form for Digital Loop Filter (Type II PLL)

From previous slide:

$$H(z) = \frac{\Delta t_{del}}{T} \frac{N}{K_v} \left(\frac{K}{s^{type-1}}\right) \frac{1+s/w_z}{1+s/w_p} \bigg|_{s=\frac{1-z^{-1}}{T}}$$

Simplified form with type = 2 (assume order = 2)

$$H(z) = K_{LF} \left(\frac{1}{1-z^{-1}}\right) \frac{1-b_1 z^{-1}}{1-a_1 z^{-1}}$$
- Where:

$$a_1 = \frac{1}{1+w_p T} \qquad b_1 = \frac{1}{1+w_z T}$$

$$K_{LF} = \left(\frac{\Delta t_{del}}{T/N}\right) \frac{K}{K_v} \left(\frac{w_p}{w_z}\right) \frac{a_1}{b_1} T \qquad \text{Note:}$$

$$T_{dco} = T/N$$

* Typically implemented by gain normalization circuit

Summary of Loop Filter Design

PLL Design Assistant allows fast loop filter design

Assumption: Type = 2, 2nd order rolloff

$$H(z) = K_{LF} \left(\frac{1}{1-z^{-1}}\right) \frac{1-b_1 z^{-1}}{1-a_1 z^{-1}}$$

- Where:
 $a_1 = \frac{1}{1+w_p T}$ $b_1 = \frac{1}{1+w_z T}$
 $K_{LF} = \left(\frac{\Delta t_{del}}{T/N}\right) \frac{K}{K_v} \left(\frac{w_p}{w_z}\right) \frac{a_1}{b_1} T$

* implemented by gain normalization circuit

• PLL Design Assistant provides the values of *K*, $w_p = 2\pi f_p$, $w_z = 2\pi f_z$

Example Digital Loop Filter Calculation

Assumptions

- Ref freq (1/T) = 50 MHz, Out freq = 3.6 GHz (so N = 72)
- $\Delta t_{del} = 20 \text{ ps}, K_v = 12 \text{ kHz/unit cap}$
- 100 kHz bandwidth, Type = 2, 2nd order rolloff

	Assistant							
	File Edit Templates							
	Dynamic Parameters							
	fo 100e3 order C1 © 2 C 3 shape © Butter © Bessel © Cheby1 © Cheby2 © Elli ripple	H iptica	z al IB					
	type 0 1 @ 2 fz/fo 1/10							
	Resulting Open Loo	pР	ara					
	K: 3.004e+010	•	alte					
	fp: 1.531e+005	Hz	alte					
	fz: 1.000e+004	Hz	alte					
	Qp:	•*	alte					
	PLL Desig	gn ,	As					
IVI.H. P	errott							

$$H(z) = K_{LF} \left(\frac{1}{1-z^{-1}}\right) \frac{1-b_1 z^{-1}}{1-a_1 z^{-1}}$$
$$b_1 = \frac{1}{1+2\pi 10 \text{kHz/50MHz}} = \boxed{.9987}$$
$$a_1 = \frac{1}{1+2\pi 153 \text{kHz/50MHz}} = \boxed{.9811}$$
$$K_{LF} = \left(\frac{\Delta t_{del}}{T/N}\right) \frac{3 \cdot 10^{10}}{12 \text{kHz}} \frac{153}{10} \frac{.9811}{.9987} \frac{1}{50 \text{MHz}}$$
$$= \left(\frac{\Delta t_{del}}{T/N}\right) 0.75 = \boxed{\left(\frac{\Delta t_{del}}{T_{dco}}\right) 0.75}$$

Overall PLL Noise Analysis

Calculation of TDC Noise Spectrum: Delay Chain TDC

Under the assumption that quantization error is uniformly distributed across time interval ∆t_{del}:

$$S_{tq}(e^{j2\pi fT}) = \frac{(\Delta t_{del})^2}{12}$$

- Key issue: quantization error may not be white for this TDC!
 - Use behavioral simulations to get a more accurate view
- 1/f noise may have impact
 M.H. Perrott

Calculation of TDC Noise Spectrum: GRO TDC

GRO achieves noise shaping:

$$S_{t_q}(e^{j2\pi fT}) =$$

 $|1 - e^{-j2\pi fT}|^2 \frac{(\Delta t_{del})^2}{12}$

 1/f and thermal noise limit noise performance at low frequency offsets

Example Calculation for Delay Chain TDC

Note: G(f) = 1 at low offset frequencies

 $10 \log(3.4 \cdot 10^{-10}) = -94.7 \ dBc/Hz$ (at low offset freq.)

Calculation of Noise Spectrum: Switched Cap DCO

Evaluate Phase Noise with 500 kHz PLL Bandwidth

Key PLL parameters:

- G(f): 500 kHz BW, Type II, 2nd order rolloff
- TDC noise: -94.7 dBc/Hz
- DCO noise: -153 dBc/Hz at 20 MHz offset (3.6 GHz carrier)

PLL Design Assistant					
File Edit Templates					
Dynamic Parameters	paris. pole	Hz On	Noise Parameters		
fo 500e3 Hz	paris. Q	On	ref. freq 50e6 Hz		
order C1 @ 2 C 3	paris. pole	Hz 📭	out freq. 3.6e9 Hz		
shape General Cheby2 C	paris. Q	On I	Detector -94.7 dBc/Hz 📒 On		
ripple dB	paris. pole	Hz Un	VCO -153 dBc/Hz		
type C1 C2	paris, pole		freq. offset 20e6 Hz		
fz/to 1/10	paris. zero	Hz On	S-D C1C2 On On C3C4C5		
Resulting Open Loop Parameters Resulting Plots and Jitter					
K: 7.509e+011 alt	er: On		C Pole/Zero Diagram C Transfer Function		
fp: 7.655e+005 Hz alt	er: On	Apply	C Step Response (Noise Plot		
fz: 5.000e+004 Hz alt	er: On		163 4066 -160 -60		
Qp: alt	er: On	rms	jitter: 980.788 fs		
Perrou					

Calculated Phase Noise Spectrum with 500 kHz BW

86

Change PLL Bandwidth to 100 kHz

Key PLL parameters:

- G(f): 100 kHz BW, Type = 2, 2nd order rolloff
- TDC noise: -94.7 dBc/Hz
- DCO noise: -153 dBc/Hz at 20 MHz offset (3.6 GHz carrier)

🜗 PLL Design Assistant							
File Edit Templates							
Dynamic Parameters	paris. pole	Hz	On	Noise Parameters			
fo 100e3 Hz order Elliptical cheby1 Cheby2 Elliptical ripple dB	paris. Q paris. pole paris. Q paris. pole paris. pole	Hz Hz Hz	On On On On	ref. freq50e6Hzout freq.3.6e9HzDetector-94.7dBc/HzOnVCO-153dBc/HzOn			
type C 1 C 2 fz/fo 1/10	paris. zero paris. zero	Hz Hz	On On	treq. offset 20eb Hz S-D C 1 C 2 On On C 3 C 4 C 5 On On On			
Resulting Open Loop Parameters Resulting Plots and Jitter							
K: 3.004e+010 alter: On fp: 1.531e+005 Hz alter: On fz: 1.000e+004 Hz alter: On Qp: alter: On On		Apply C Pole/Zero Diagram C Transfer Function C Step Response I e3 40e6 -160 -60 rms jitter: 464.961 fs					

Calculated Phase Noise Spectrum with 100 kHz BW

88

Digital Fractional-N Synthesis

A First Glance at Fractional-N Signals (F_{out} = 4.25F_{ref})

Constant divide value of N = 4 leads to frequency error

M.H. Perrott Phase error accumulates in unbounded manner

TI Approach to Fractional Division

Wrap *e[k]* by feeding delay chain in TDC with *out(t)*Counter provides information of *when* wrapping occurs

Key Issues

- Counter, re-timing register, and delay stages of TDC must operate at very high speeds
 - Power consumption can be an issue
- Calibration of TDC scale factor required to achieve proper unwrapping of *e[k]*
 - Can be achieved continuously with relative ease
 - See Staszewski et. al, JSSC, Dec 2005

Fractional-N Synthesizer Approach (F_{out} = 4.25F_{ref})

Accumulator guides the "swallowing" of VCO cycles

Average divide value of N = 4.25 is achieved in this case

The Accumulator as a Phase "Observer"

- Accumulator residue corresponds to an estimate of the instantaneous phase error of the PLL
 - Fractional value (i.e., 0.25) yields the slope of the residue
- Carry out signal is asserted when the phase error deviation (i.e. residue) exceeds one VCO cycle
 - Carry out signal accurately predicts when a VCO cycle should be "swallowed"

Improve Dithering Using Sigma-Delta Modulation

- Provides improved noise performance over accumulator-based divide value dithering
 - Dramatic reduction of spurious noise
 - Noise shaping for improved in-band noise
 - Maintains bounded phase error signal
- Digital Σ–Δ fractional-N synthesizer architecture is directly analogous to analog Σ–Δ fractional-N synth.

Model of Digital Σ - Δ **Fractional-N PLL**

Divider model is expanded to include the impact of M.H. Perrott

Transfer Function View of Digital Σ - Δ **Fractional-N PLL**

- $\Sigma-\Delta$ quantization noise now impacts the overall PLL phase noise
 - High PLL bandwidth will increase its impact
- Digital PLL implementation simplifies quantization noise cancellation

CppSim Behavioral Model of TI Digital Synthesizer

Implements basic version of TI "all-digital" synthesizer with parameters we calculated in this tutorial

Comparing Behavioral Simulation to Calculations

99

Behavioral Simulation of a Digital Fractional-N PLL

Check out the CppSim tutorial:

■ Design of a Low-Noise Wide-BW 3.6GHz Digital Σ-Δ Fractional-N Frequency Synthesizer Using the PLL Design Assistant and CppSim

http://www.cppsim.com

Summary of Digital Frequency Synthesizers

- Digital Phase-Locked Loops look extremely promising for future applications
 - Very amenable to future CMOS processes
 - Excellent performance can be achieved
- TDC structures are an exciting research area
 - Ideas from A-to-D conversion can be applied
- Analysis of digital PLLs is similar to analog PLLs
 - PLL bandwidth is often chosen for best noise performance
 - TDC (or Ref) noise dominates at low frequency offsets
 - DCO noise dominates at high frequency offsets
- Behavioral simulation tools such as CppSim allow architectural investigation and validation of calculations

Innovation of future digital PLLs will involve joint circuit/algorithm development