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Why Are Digital Phase-Locked Loops Interesting?

PLLs are needed for a wide range of applications
- Communication systems (both wireless and wireline)
- Digital processors (to achieve GHz clocks)

Performance is important
- Phase noise can limit wireless transceiver performance
- Jitter can be a problem for digital processors

The standard analog PLL implementation is 
problematic in many applications
- Analog building blocks on a mostly digital chip pose 

design and verification challenges
- The cost of implementation is becoming too high …

Can digital phase-locked loops offer 
excellent performance with a lower 

cost of implementation?
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Integer-N Frequency Synthesizers

Use digital counter structure to divide VCO frequency
- Constraint:  must divide by integer values

Use PLL to synchronize reference and divider output

Sepe and Johnston
US Patent (1968)

Output frequency is digitally controlled
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Fractional-N Frequency Synthesizers

Dither divide value to achieve fractional divide values
- PLL loop filter smooths the resulting variations

Very high frequency resolution is achieved
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The Issue of Quantization Noise

Limits PLL bandwidth
Increases linearity requirements of 
phase detector
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Striving for a Better PLL Implementation
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Analog Phase Detection

Pulse width is formed according to phase difference 
between two signals
Average of pulsed waveform is applied to VCO input
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Tradeoffs of Analog Approach

Benefit:  average of pulsed output is a continuous, linear 
function of phase error
Issue:  analog loop filter implementation is undesirable
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Issues with Analog Loop Filter

Charge pump:  output resistance, mismatch
Filter caps:  leakage current, large area

out(t)ref(t) Analog

Loop Filter
Phase

Detect

VCO

error(t)
Icp

Vout
Charge

Pump

Cint

Divider



10M.H. Perrott

Going Digital …

Digital loop filter:  compact area,  insensitive to leakage
Challenges: 
- Time-to-Digital Converter (TDC)
- Digitally-Controlled Oscillator (DCO)

Staszewski et. al.,
TCAS II, Nov 2003
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Time-to-Digital Conversion
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Resolution set by a “Single Delay Chain” structure
- Phase error is measured with delays and registers

Corresponds to a flash architecture
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Impact of Limited Resolution and Delay Mismatch

Integer-N PLL
- Limit cycles due to limited resolution (unless high ref noise)

Fractional-N PLL
- Fractional spurs due to non-linearity from delay mismatch



14M.H. Perrott

Modeling of TDC

Phase error converted to time error by scale factor:  T/2π
TDC introduces quantization error:   tq[k]
TDC gain set by average delay per step:  Δtdel
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How Do We Improve Performance?

Two Key Issues:
• TDC resolution
• Mismatch
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Issues with Vernier Approach

Mismatch issues are more severe than the single delay 
chain TDC
- Reduced delay is formed as difference of two delays

Large measurement range requires large area
- Initial PLL frequency acquisition may require a large range

Effective 
resolution:
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Vernier
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Ramakrishnan, Balsara
VLSID ‘06
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Single Delay Chain

div(t)

ref(t)

Coarse
e[k]

Delay Delay DelayDelay Delay Delay

Reg

D Q

Reg

D Q

Reg

D Q

Reg

D Q

Reg

D Q

Reg

D Q

Logic

Mux

Fine
e[k]

Single Delay Chain

Delay

Delay

Time

Amplifier

Amplification
of Time

Single delay chain provides 
coarse and fine resolution
Time amplification is used 
to improve resolution

Simplified view of:   Lee, Abidi
VLSI 2007

Two-Step TDC Using Time Amplification
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Leveraging Metastability to Create a Time Amplifier

Metastability leads to progressively slower output 
transitions as setup time on latch is encroached upon
- Time difference at input is amplified at output

Simplified view of:  Abas, et al., Electronic Letters, Nov 2002
(note that actual implementation uses SR latch)
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Interpolating time-to-digital converter

Interpolate between edges to achieve fine resolution
Cyclic approach can also be used for large range
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Ring Oscillator
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An Oscillator-Based TDC

Output e[k] corresponds to the number of oscillator 
edges that occur during the measurement time window
Advantages
- Extremely large range can be achieved with compact area
- Quantization noise is scrambled across measurements
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A Closer Look at Quantization Noise Scrambling

Quantization error occurs at beginning and end of each 
measurement interval
As a rough approximation, assume error is uncorrelated 
between measurements
- Averaging of measurements improves effective resolution
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Deterministic quantizer error vs. scrambled error

Deterministic TDC do not provide inherent scrambling
For oversampling benefit, TDC error must be scrambled!
Some systems provide input scrambling (ΔΣ fractional-N PLL), 
while some others do not (integer-N PLL)



Proposed GRO TDC Structure
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Ring Oscillator
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A Gated Ring Oscillator (GRO) TDC

Enable ring oscillator only during measurement intervals
- Hold the state of the oscillator between measurements

Quantization error becomes first order noise shaped!
- e[k] = Phase Error[k] + q[k] – q[k-1]
- Averaging dramatically improves resolution!
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Raw resolution is set by inverter delay
Effective resolution is dramatically improved by averaging

Helal, Straayer, Wei, 
Perrott VLSI 2007

Improve Resolution By Using All Oscillator Phases
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GRO TDC Also Shapes Delay Mismatch

Barrel shifting occurs through delay elements across 
different measurements
- Mismatch between delay elements is first order shaped!
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Simple gated ring oscillator inverter-based core
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GRO Prototype

GRO implemented as a custom 
0.13 μm CMOS IC

Straayer,
Perrott 

15 Stage Gated Ring Oscillator
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Measured deadzone behavior of inverter-based GRO

Deadzones were caused by errors in gating the oscillator
GRO “injection locked” to an integer ratio of FS
Behavior occurred for almost all integer boundaries, and 
some fractional values as well
Noise shaping benefit was limited by this gating error
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The issue of gating non-idealities…
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Oscillator does not stop and start instantly
Actual phase trajectory deviates from ideal trajectory by a 
time defined as “Tskew”
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Interrupted transition causes charge redistribution

Enable

Vd

Vo

Vss

Vd

Vo

(a) (b)

Vo

Enable

Vo

Vdd

Cp

Cd

Cp

Cd

Rinv

Rinv

Rsw

Enable

Rsw

Vd

Vd

Charge redistribution 
depends on when the 
transition is stopped
Positive and negative 
transitions are not 
perfectly symmetric
Gating skew (Tskew) 
then depends on GRO 
phase (θGRO) when 
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Cartoon depicting the error from individual stages

Only one stage in 
transition at a time
Tskew is the sum of error 
from each of the 
individual stages
Periodic with 2Tq due to 
positive and negative 
transition asymmetry
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Next Generation GRO:  Multi-path oscillator concept

Use multiple inputs for each delay element instead of one
Allow each stage to optimally begin its transition based on 
information from the entire GRO phase state 
Key design issue is to ensure primary mode of oscillation

Single Input
Single Output

Multiple Inputs
Single Output
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Multi-path inverter core

Lee, Kim, Lee
JSSC 1997

Mohan, et. al., 
CICC 2005
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Proposed multi-path gated ring oscillator

Oscillation frequency near 2GHz with 47 stages…
Reduces effective delay per stage by a factor of 5-6! 
Represents a factor of 2-3 improvement compared to previous 
multi-path oscillators

Hsu, Straayer, Perrott 
ISSCC 2008
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A simple measurement approach…

2 counters per stage * 47 stages = 94 counters each at 2GHz 
Power consumption for these counters is unreasonable

Need a more efficient way to measure the multi-path GRO 

N-Stage Gated Ring Oscillator
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Helal, Straayer, Perrott 
VLSI 2007
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Phase-based measurement for a simple GRO
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Simple logic provides map from GRO output state to phase
Transition sequence is predictable, unambiguous
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Accounting for phase wrapping…

Calculate phase from:
- A single counter for coarse phase information
- GRO output state for fine phase residual

1 counter and N registers much more efficient
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Accuracy considerations…

Counter and registers need to have the same state
Cannot allow counters to double-count a single transition



43M.H. Perrott

De-glitch circuits to ensure accurate measurements
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Key issue with scheme for an multi-path GRO…

More than one delay element output is logically uncertain
Transition sequence is unpredictable and ambiguous
Cannot map from entire GRO output state to phase
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Restoring the predictable relationship…

Calculate phase contribution from each cell independently
Transition sequence within each cell is now predictable 
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Prototype 0.13μm CMOS multi-path GRO-TDC
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Two implemented versions:
- 8-bit, 500Msps
- 11-bit, 100Msps version

2-21mW power consumption depending on input duty cycle
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Measured noise-shaping of multi-path GRO

Data collected at 50Msps
More than 20dB of noise-shaping benefit
80fsrms integrated error from 2kHz-1MHz
Floor primarily limited by 1/f noise (up to 0.5-1MHz)
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Measured 11-bit range of multi-path GRO
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Measured deadzone behavior for multi-path GRO

Only deadzones for outputs that are multiples of 2N
- 94, 188, 282, etc.
- No deadzones for other even or odd integers, fractional output

Size of deadzone is reduced by 10x
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Revised gating skew cartoon for the multi-path GRO
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- Most of the mismatch from 

positive and negative 
transitions is cancelled

Tskew is the average of error 
from each of the individual 
stages
- GRO phase trajectory is 

determined by many 
stages, not just one
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11-bit GRO-TDC performance summary

Sampling Frequency <100 MHz

Raw delay resolution 6ps

Effective resolution 1ps @ 50Msps

Integrated noise 80fs-rms, 2kHz-1MHz 

Dynamic range 95dB, 1MHz BW

Power
2.2-21mW 

(<4mW typical)

Area 157 x 258μm

Technology 0.13μm CMOS
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Summary of Time to Digital Conversion

Key performance metrics are
- Resolution:  want low quantization noise
- Mismatch:  want high linearity
- Power and area:  want long battery life, low cost

Many structures have been introduced
- Classical, Vernier, Two-Step, Time Amplifiers,              

Re-cycling, Gated Ring Oscillator
Comparable to ADCs but suffers from lack of        
“time memory element”
- Cyclic conversion and pipeline structures have not been 

achieved
A very promising research area!



Digitally-Controlled Oscillators
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A Straightforward Approach for Achieving a DCO

Use a DAC to control a conventional LC oscillator
- Allows the use of an existing VCO within a digital PLL
- Can be applied across a broad range of IC processes

Ferriss ISSCC 2007
Hsu ISSCC 2008
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A Much More Digital Implementation

Adjust frequency in an LC oscillator by switching in a 
variable number of small capacitors
- Most effective for CMOS processes of 0.13u and below

Staszewski et. al.,
TCAS II, Nov 2003
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Leveraging Segmentation in Switched Capacitor DCO

Similar in design as segmented capacitor DAC structures
- Binary array:  efficient control, but may lack monotonicity
- Unit element array: monotonic, but complex control

Coarse and fine control segmentation of DCO
- Coarse control:  active only during initial frequency tuning 

(leverage binary array)
- Fine control:  controlled by PLL feedback (leverage unit 

element array to guarantee monotonicity)
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Leveraging Dithering for Fine Control of DCO

Increase resolution by Σ−Δ dithering of fine cap array
Reduce noise from dithering by
- Using small unit caps in the fine cap array
- Increasing the dithering frequency (defined as 1/Tc)

We will assume 1/Tc = M/T (i.e. M times reference frequency)
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Time-Domain Modeling of the DCO

Input to the DCO is supplied by the loop filter
- Clocked at 1/T (i.e., reference frequency)

Switched capacitors are dithered by Σ−Δ at a higher rate
- Clocked at 1/Tc = M/T
- Held at a given setting for duration Tc

Fine cap element value determines Kv of VCO
- Units of Kv are Hz/unit cap
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Frequency Domain Modeling of DCO

Upsampler and zero-order hold correspond to discrete and 
continuous-time sinc functions, respectively
Σ−Δ has signal and noise transfer functions (Hstf(z), Hntf(z))
- Note: var(qraw[k]) = 1/12 (uniformly distributed from 0 to 1)
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Simplification of the DCO Model

Focus on low frequencies for calculations to follow
- Assume sinc functions are relatively flat at the low 

frequencies of interest
Upsampler is approximated as a gain of M
Zero-order hold is approximated as a gain of Tc

Assume Hstf(z) = 1
- True for Σ−Δ structures such as MASH (ignoring delays)
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Spectral Density Calculations
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s=j2πf

in[k]

qraw[k]

Φout(t)

q[k]

Phase
Noise

ff

Quantization
Noise

Calculation of Quantization Noise from Cap Dithering

DT to CT spectral calculation:

- Sqraw
(f) = 1/12 since qraw[k] uniformly distributed from 0 to 1

- Hntf(z) is often 1-z-1 (first order) or (1-z-1)2 (second order)
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Example Calculation for DCO Quantization Noise

At a frequency offset of f = 20 MHz:

Assumptions (Out freq = 3.6 GHz)
- Dithering frequency is 200 MHz (i.e., 1/Tc = 200e6)
- Σ−Δ has first order shaping (i.e., Hntf(z) = 1 - z-1)
- Fine cap array yields 12 kHz/unit cap (i.e., Kv = 12e3) 

Below the phase noise (-153 dBc/Hz at 20 MHz) in the example
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Hntf(z)
z=ej2πfTc

TcM
2πKv

s

s=j2πf

in[k]

qraw[k]

Φout(t)

q[k]

Phase
Noise

ff

Quantization
Noise

T
2πKv

s

s=j2πf

Φout(t)in[k]

DT-CT
Φn(t)

DCO-Referred
Noise

SΦn
(f)

f

Further Simplification of DCO Model

Proper design of DCO will 
yield quantization noise 
that is below that of the 
intrinsic phase noise (set 
by tank Q, etc.)
- Assume q[k] = 0 for 

simplified model
Note that T = M¢Tc
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f

Stq
(ej2πfT)

TDC-referred
Noise

e[k]T

2π

tq[k] TDC
Gain

1

Δtdel

Φref[k]

H(z)

Loop
Filter

2πKv

s

Φn(t)

1

T

T

1

N

DT-CT

CT-DT

Φdiv[k]

Φout(t)

TDC DCO

Divider

SΦn
(f)

-20 dB/dec

f

DCO-referred
Noise

z=ej2πfT s=j2πf

Overall Digital PLL Model

TDC and DCO-referred noise influence overall phase noise 
according to associated transfer functions to output
Calculations involve both discrete and continuous time
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Key Transfer Functions

TDC-referred noise

DCO-referred noise

e[k]T

2π

tq[k] TDC
Gain

1

Δtdel

Φref[k]

H(z)

Loop
Filter

2πKv

s

Φn(t)

1

T

T

1

N

DT-CT

CT-DT

Φdiv[k]

Φout(t)

z=ej2πfT s=j2πf
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Define open loop transfer function A(f) as:

Define closed loop parameterizing function G(f) as:

- Note:  G(f) is a lowpass filter with DC gain = 1

Introduce a Parameterizing Function

e[k]T

2π

tq[k] TDC
Gain

1

Δtdel

Φref[k]

H(z)

Loop
Filter

2πKv

s

Φn(t)

1

T

T

1

N

DT-CT

CT-DT

Φdiv[k]

Φout(t)

z=ej2πfT s=j2πf
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Transfer Function Parameterization Calculations

TDC-referred noise

DCO-referred noise
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e[k]T

2π

tq[k] TDC
Gain

1

Δtdel

Φref[k]

H(z)

Loop
Filter

2πKv

s

Φn(t)

1

T

T

1

N

DT-CT

CT-DT

Φdiv[k]

Φout(t)

z=ej2πfT s=j2πf

Key Observations

TDC-referred noise
Lowpass with a DC

gain of 2πN

Highpass with a high
frequency gain of 1

DCO-referred noise

How do we calculate the output phase noise?
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fofo
2πN G(f) 1-G(f)

SΦn
(f)

-20 dB/dec

f

DCO-referred
Noise

f

TDC-referred
Noise

tq[k] Φn(t)

Φout(t)

Stq
(ej2πfT)

f

dBc/Hz

fo

G(f)2πN
T
1 2

Stq
(ej2πfT)

SΦn
(f)G(f)1-

2

Phase Noise Calculation

TDC noise
- DT to CT calculation
- Dominates PLL phase 

noise at low frequency 
offsets

DCO noise
- CT to CT calculation
- Dominates PLL phase 

noise at high frequency 
offsets
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fofo
2πN G(f) 1-G(f)

SΦn
(f)

-20 dB/dec

f

DCO-referred
Noise

f

TDC-referred
Noise

tq[k] Φn(t)

Φout(t)

f

dBc/Hz

Stq
(ej2πfT)

f

dBc/Hz

fofo

Low PLL Bandwidth High PLL Bandwidth

DCO
Noise

TDC
Noise

TDC
Noise DCO

Noise

PLL bandwidth 
dramatically influences 
relative impact of TDC 
and VCO noise

Want high PLL 
bandwidth?

Impact of PLL Bandwidth

Need low
TDC Noise



System Level Design
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Closed Loop PLL Design Approach

Classical open loop approach
- Indirectly design G(f) using bode plots of A(f)

Proposed closed loop approach
- Directly design G(f) by examining impact of its 

specifications on phase noise (and settling time)
- Solve for A(f) that will achieve desired G(f)

Implemented in PLL Design Assistant Software

Lau and Perrott, 
DAC, June 2003

Closed-Loop
Performance

Specifications

G(f)
A(f)

1+A(f)
=

A(f)
G(f)

1-G(f)
=

|A(f)| A(f)

{K,fp,fz, ...}

Open-Loop
Characteristics

Closed-Loop
Transfer
Function

G(f)

Open-Loop
Design

Approach

{fo, type, order}

Proposed Closed Loop Design Approach

http://www.cppsim.com
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Transfer Function Design using PLL Design Assistant

PLL Design Assistant assumes continuous-time open 
loop transfer function Acalc(s):

Above parameters are calculated 
based on the desired closed loop 
PLL bandwidth, type, and order of 
rolloff (which specify G(s))
For 100 kHz bandwidth, type = 2,  
2nd order rolloff, we have:
- K = 3.0x1010

- wp =  2π(153 kHz)
- wz = 2π(10 kHz)



75M.H. Perrott

e[k]T

2π

tq[k] TDC
Gain

1

Δtdel

Φref[k]

Loop
Filter

2πKv

s

Φn(t)

1

T

T

1

N

DT-CT

CT-DTΦdiv[k]

Φout(t)

z=esT s=j2πf

H(z)

Continuous-Time Approximation of Digital PLL

Resulting continuous-time approximation of open 
loop transfer function of digital PLL:

At low frequencies (i.e., |sT| << 1), we can use the first 
order term of a Taylor series expansion to approximate
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Applying PLL Design Assistant to Digital PLL Design

Given the continuous-time approximation of A(s), we 
then leverage the PLL Design Assistant calculation:

- Also note that:

Given the above, we obtain:
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Simplified form with type = 2 (assume order = 2)

Simplified Form for Digital Loop Filter (Type II PLL)

From previous slide:

- Where:

* Typically implemented by gain normalization circuit
*

Note:
Tdco= T/N
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Summary of Loop Filter Design

PLL Design Assistant allows fast loop filter design
Assumption:  Type = 2, 2nd order rolloff

- Where:

PLL Design Assistant provides the 
values of K, wp = 2πfp, wz = 2πfz

* implemented by gain normalization circuit
*
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Example Digital Loop Filter Calculation

Assumptions
- Ref freq (1/T) = 50 MHz, Out freq = 3.6 GHz  (so N = 72)
- Δtdel = 20 ps, Kv = 12 kHz/unit cap
- 100 kHz bandwidth, Type = 2 , 2nd order rolloff



Overall PLL Noise Analysis
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f

Stq
(ej2πfT) Δtdel

12

2

thermal
noise

1/f
noise

div(t)

Reg

D Q

Reg

D Q

Reg

D Q

ref(t)

e[k]

Δtdel Δtdel Δtdel

time
error[k]

e[k]

tq[k] TDC
Gain

1

Δtdel

Calculation of TDC Noise Spectrum:  Delay Chain TDC

Under the assumption that quantization error is 
uniformly distributed across time interval Δtdel:

Key issue:  quantization error 
may not be white for this TDC!
- Use behavioral simulations to 

get a more accurate view
1/f noise may have impact
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f

Stq
(ej2πfT)

thermal
noise

1/f
noise

Δtdel

12

22

1-ej2πfT

Calculation of TDC Noise Spectrum:  GRO TDC

GRO achieves noise shaping:

1/f and thermal noise 
limit noise performance 
at low frequency offsets

e[k]

ref(t)

div(t)

Digital Logic

Enable

ΔtdelΔtdelΔtdel

time
error[k]

e[k]

tq[k]
TDC
Gain

1

Δtdel

1-z-1

traw[k]

z=ej2πfT
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Example Calculation for Delay Chain TDC

Note:  G(f) = 1 at low offset frequencies

Ref freq = 1/T = 50 MHz,      
Out freq = 3.6 GHz

Inverter delay = Δtdel = 20 ps

fo

fo
2πN G(f)

f

tq[k]

f

G(f)2πN
T
1 2 Δtdel

12

2

Δtdel

12

2

Stq
(ej2πfT)

SΦout
(f)

tdc
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Hntf(z)
z=ej2πfTc

TcM
2πKv

s

s=j2πf

in[k]

qraw[k]

Φout(t)

q[k]

Phase
Noise

ff

Quantization
Noise

Phase noise
- Same as for 

conventional    
VCO                  
(tank Q, etc.)

Quantization noise 
from dithering
- Design to be    

less than VCO 
phase noise

Calculation of Noise Spectrum:  Switched Cap DCO

V
a

ra
c

to
r

V
a

ra
c

to
r

Digital

Control
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Evaluate Phase Noise with 500 kHz PLL Bandwidth 

Key PLL parameters:
- G(f):  500 kHz BW, Type II, 2nd order rolloff
- TDC noise:  -94.7 dBc/Hz
- DCO noise:  -153 dBc/Hz at 20 MHz offset (3.6 GHz carrier)
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Overall PLL
Phase Noise

Calculated Phase Noise Spectrum with 500 kHz BW

TDC noise too high for GSM mask with 500 kHz PLL bandwidth
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Change PLL Bandwidth to 100 kHz

Key PLL parameters:
- G(f):  100 kHz BW, Type = 2, 2nd order rolloff
- TDC noise:  -94.7 dBc/Hz
- DCO noise:  -153 dBc/Hz at 20 MHz offset (3.6 GHz carrier)
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Calculated Phase Noise Spectrum with 100 kHz BW

GSM mask is met with 100 kHz PLL bandwidth



Digital Fractional-N Synthesis
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Time

-to-

Digital

out(t)ref(t) Digital

Loop Filter

DCO
Dividerdiv(t)

e[k]

N[k]

N[k] 4
5

out(t)

div(t)

ref(t)

e[k]

Constant divide value of N = 4 leads to frequency error
- Phase error accumulates in unbounded manner

A First Glance at Fractional-N Signals (Fout = 4.25Fref )
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Time

-to-

Digital

out(t)ref(t)
Digital

Loop Filter

DCO

div(t)

cnt[k]

out(t)

ref(t)

e[k]

4
5

Reg count
cnt[k]

resetRe-time
ref(t) 
signal

Reg

e[k]

div(t)

Phase

Unwrap

Reg

TI Approach to Fractional Division

Wrap e[k] by feeding delay chain in TDC with out(t)
Counter provides information of when wrapping occurs

Staszewski
et. al.,

TCAS II, Nov 
2003
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Key Issues

Counter, re-timing register, and delay stages of TDC 
must operate at very high speeds
- Power consumption can be an issue

Calibration of TDC scale factor required to achieve 
proper unwrapping of e[k]
- Can be achieved continuously with relative ease

See Staszewski et. al, JSSC, Dec 2005

Time

-to-

Digital

out(t)ref(t)
Digital

Loop Filter

DCO

div(t)

Reg count
cnt[k]

resetRe-time
ref(t) 
signal

Reg

e[k]
Phase

Unwrap

Reg
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Accum
4.25

Time

-to-

Digital

out(t)ref(t) Digital

Loop Filter

DCO
Dividerdiv(t)

e[k]

N[k]

N[k] 4
5

out(t)

div(t)

ref(t)

e[k]

Fractional-N Synthesizer Approach (Fout = 4.25Fref )

Accumulator guides the “swallowing” of VCO cycles
- Average divide value of N = 4.25 is achieved in this case
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The Accumulator as a Phase “Observer”

Accumulator residue corresponds to an estimate of the 
instantaneous phase error of the PLL
- Fractional value (i.e., 0.25) yields the slope of the residue

Carry out signal is asserted when the phase error 
deviation (i.e. residue) exceeds one VCO cycle
- Carry out  signal accurately predicts when a VCO cycle 

should be “swallowed”

Time

-to-

Digital

out(t)ref(t) Digital

Loop Filter

DCO
Dividerdiv(t)

e[k]

Accum
N.Frac = 4.25 Residue

Carry
Out

Frac
=0.25

Carry Out
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Improve Dithering Using Sigma-Delta Modulation

Provides improved noise performance over 
accumulator-based divide value dithering
- Dramatic reduction of spurious noise
- Noise shaping for improved in-band noise
- Maintains bounded phase error signal

Digital Σ−Δ fractional-N synthesizer architecture is 
directly analogous to analog Σ−Δ fractional-N synth.

Time

-to-

Digital

out(t)ref(t) Digital

Loop Filter

DCO
Dividerdiv(t)

e[k]

N[k]
Σ−Δ Modulator M.F

 Nsd[k]

f

Σ−Δ Quantization
Noise
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Noise

Model of Digital Σ−Δ Fractional-N PLL

Divider model is expanded to include the impact of 
divide value variations
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Transfer Function View of Digital Σ−Δ Fractional-N PLL

Σ−Δ quantization 
noise now 
impacts the 
overall PLL phase 
noise
- High PLL 

bandwidth will 
increase its 
impact

Digital PLL 
implementation 
simplifies 
quantization noise 
cancellation
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CppSim Behavioral Model of TI Digital Synthesizer

Implements basic version of TI “all-digital” synthesizer 
with parameters we calculated in this tutorial
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Comparing Behavioral Simulation to Calculations

Calculations validated by simulation results!
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Behavioral Simulation of a Digital Fractional-N PLL

Check out the CppSim tutorial:
- Design of a Low-Noise Wide-BW 3.6GHz Digital Σ−Δ Fractional-N 

Frequency Synthesizer Using the PLL Design Assistant and CppSim

http://www.cppsim.com
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Summary of Digital Frequency Synthesizers

Digital Phase-Locked Loops look extremely promising 
for future applications
- Very amenable to future CMOS processes
- Excellent performance can be achieved

TDC structures are an exciting research area
- Ideas from A-to-D conversion can be applied

Analysis of digital PLLs is similar to analog PLLs
- PLL bandwidth is often chosen for best noise performance 

TDC (or Ref) noise dominates at low frequency offsets
DCO noise dominates at high frequency offsets

Behavioral simulation tools such as CppSim allow 
architectural investigation and validation of calculations

Innovation of future digital PLLs will involve joint 
circuit/algorithm development
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