Short Course On Phase-Locked Loops and Their Applications Day 4, PM Lecture

Examples of Leveraging Digital Techniques in PLLs

Michael Perrott August 14, 2008

Copyright © 2008 by Michael H. Perrott All rights reserved.

Outline

- Example of high performance digital frequency synthesizer
 - Goal: wide bandwidth (500 kHz) and low phase noise
 - Techniques to achieve low implementation complexity
- Example of high performance mixed-signal clock and data recovery
 - **Goal:** Iow jitter and full integration with compact area
 - Techniques to achieve low implementation complexity

Going Digital ...

- Digital loop filter: compact area, insensitive to leakage
- Challenges:
 - Time-to-Digital Converter (TDC)
 - Digitally-Controlled Oscillator (DCO)

Examine Noise Performance: Narrow-Bandwidth Case

- VCO noise dominates performance everywhere …
 - Don't need very high TDC resolution

• $\Delta - \Sigma$ fractional-N quantization noise is not an issue *M.H. Perrott*

Examine Noise Performance: Wide-Bandwidth Case

- Assumptions:
 - delay = 20ps
 - carrier freq.= 3.6GHz
 - reference freq.
 - = 50MHz
 - PLL BW
 = 500kHz
 - **3**rd order $\Delta\Sigma$

- Noise dominated by TDC at low frequencies
- Noise dominated by $\Delta\Sigma$ fractional-N noise at high frequencies

To Meet High Performance Applications like GSM....

- Assumptions:
 - delay = 6ps
 - carrier freq.= 3.6GHz
 - reference freq.= 50MHz
 - PLL BW
 = 500kHz
 - 3rd order ΔΣ
 (20dB lower)

Need 6-ps TDC resolution and 20dB cancellation of $\Delta - \Sigma$ fractional-N noise to achieve 500kHz bandwidth

Proposed Digital Wide BW Synthesizer

- Gated-ring-oscillator (GRO) TDC achieves low in-band noise
- All-digital quantization noise cancellation achieves low out-of-band noise
- Design goals:
 - 3.6-GHz carrier, 500-kHz bandwidth
 - <-100dBc/Hz in-band, <-150 dBc/Hz at 20 MHz offset</p>

Key Enablers: GRO and $\Delta \Sigma$ Frac-N Noise Cancellation

Proposed Multi-Path GRO TDC

Average delay per stage is reduced from 35ps to 6ps

M.H. Perrott • Noise shaping further improves effective resolution

Reduction of Fractional-N Quantization Noise

• Increasing PLL bandwidth increases impact of $\Delta\Sigma$ fractional-N noise

Cancellation offers a way to counter this effect

Previous Analog Quantization Noise Cancellation

- Phase error due to ΔΣ is predicted by accumulating ΔΣ quantization error
- Gain matching between PFD and D/A must be precise
 Matching in *analog* domain limits performance

Proposed All-digital Quantization Noise Cancellation

- Scale factor determined by simple digital correlation
- Analog non-idealities such as DC offset are completely eliminated

Details of Proposed Quantization Noise Cancellation

Overall Synthesizer Architecture

Note: Detailed behavioral simulation model available at http://www.cppsim.com

Dual-Port LC VCO

Frequency tuning:

- Use a small 1X varactor to minimize noise sensitivity
- Use another 16X varactor to provide moderate range

Use a four-bit capacitor array to achieve 3.3-4.1 GHz range

VCO Varactor

Accumulation-mode varactor used for both coarse and fine frequency tuning

- Coarse varactor is 16 times the size of fine varactor
- Provides good ratio of capacitance versus voltage variation with limited supply voltage

Switched Structure for Coarse Cap Tuning

- Ma0 provides low differential resistance for caps
 - Ma3 and Ma4 provide low bias voltage to minimize Ma0 channel resistance when Ma0 is turned on
 - Minimizes impact on Q of tank
- Ma2 provides high bias when Ma0 is turned off
 - Keeps voltage at n1 and n2 defined and prevents turnon of Ma0

Digitally-Controlled Oscillator with Passive DAC

- Goals of 10-bit DAC
 - Monotonic

- DAC 10 DAC DAC DAC DAC Out(t)
 - 1X varactor minimizes noise sensitivity
 - 16X varactor provides moderate range
 - A four-bit capacitor array covers 3.3-4.1GHz
- Minimal active circuitry and no transistor bias currents
- Full-supply output range

Operation of 10-bit Passive DAC (Step 1)

- 5-bit resistor ladder; 5-bit switch-capacitor array
- Step 1: Capacitors Charged
 - Resistor ladder forms $V_L = M/32 \cdot V_{DD}$ and $V_H = (M+1)/32 \cdot V_{DD}$, where M ranges from 0 to 31
 - N unit capacitors charged to V_H, and (32-N) unit capacitors charged to V_L

Operation of 10-bit Passive DAC (Step 2)

- Step 2: Disconnect Capacitors from Resistors, Then Connect Together
 - Achieves DAC output with first-order filtering
 - Bandwidth = $32 \cdot C_u / (2\pi \cdot C_{load}) \cdot 50 \text{MHz}$
 - Determined by capacitor ratio
 - Easily changed by using different C_{load}

Now Let's Examine Divider ...

Issues:

 GRO range must span entire reference period during initial lock-in

Proposed Divider Structure

Resample reference with 4x division frequency

Lowers GRO range to one fourth of the reference period

Proposed Divider Structure (cont'd)

Asynchronous Divider Structure

Vaucher et. al., "A Family of Low-Power Truly Modular Programmable Dividers ...", JSSC, July 2000

Implementation of 2/3 Sections in Modular Approach

Same as discussed on day 2 of this class

Implementation of 2/3 Section

Combines logic gates into TSPC latches

Requires only 1 ma at 3.6 GHz operation in 0.13u CMOS!

Dual-Path Loop Filter

- Step 1: reset
- Step 2: frequency acquisition
 - V_c(t) varies
 - V_f(t) is held at midpoint
- Step 3: steady-state lock conditions
 - V_c(t) is frozen to take quantization noise away
- ΔΣ quantization noise cancellation is enabled

Fine-Path Loop Filter

Equivalent to an analog lead-lag filter

- Set zero (62.5kHz) and first pole (1.1MHz) digitally
- Set second pole (3.1MHz) by capacitor ratio

First-order ΔΣ reduces in-band quantization noise

Same Technique Poses Problems for Coarse-Tune

Fix: Leverage the Divider as a Signal Path

Linearized Model of PLL Under Fine-Tune Operation

- Standard lead-lag filter topology but implemented in digital domain
 - Consists of accumulator plus feedforward path

Linearized Model of PLL Under Coarse-Tune Operation

- Routing of signal path into Sigma-Delta controlling the divider yields a feedforward path
 - Adds to accumulator path as both signals pass back through the divider
 - Allows reduction of coarse DAC bandwidth
 - Noise impact of coarse DAC on VCO is substantially lowered

VCO Buffer Implementation

- Consists of inverters with self-biased first stage
 - AC coupling from VCO output into buffer
 - Achieves low noise (as will be seen in far-out phase noise in measured results)

Die Photo

- 0.13-µm CMOS
- Active area: 0.95 mm²
- Chip area: 1.96 mm²
- V_{DD}: 1.5V
- Current:
 - 26mA (Core)
 - 7mA (VCO output buffer at 1.1V)

GRO-TDC:

- **2.3mA**
- **157X252** um²

Power Distribution of Prototype IC

 Notice GRO and digital quantization noise cancellation have only minor impact on power (and area)

Measured Phase Noise at 3.67GHz

Agilent E5052A Signal Source Analyzer

Suppresses quantization noise by more than 15 dB

- Achieves
 204 fs
 (0.27 degree)
 integrated
 noise (jitter)
- Reference spur: -65dBc
Calculation of Phase Noise Components

See wideband digital synthesizer tutorial available at http://www.cppsim.com
M.H. Perrott

Measured Worst Spurs over Fifty Channels

- Tested from 3.620 GHz to 3.670 GHz at intervals of 1 MHz
 - Worst spurs observed close to integer-N boundary (multiples of 50 MHz)

-42dBc worst spur observed at 400kHz offset from boundary M.H. Perrott

Conclusions

- Digital Phase-Locked Loops look extremely promising for future applications
 - Very amenable to future CMOS processes
 - Excellent performance can be achieved
- A low-noise, wide-bandwidth digital ΔΣ fractional-N frequency synthesizer is achieved with
 - High performance noise-shaping GRO TDC
 - Quantization noise cancellation in *digital* domain
- Key result: < 250 fs integrated noise with 500 kHz bandwidth

Innovation of future digital PLLs will involve joint circuit/algorithm development

Mixed Signal CDR Example

Clock and Data Recovery Circuits for SONET

Function: recover clock from input NRZ data stream

- Want to support multi-rates: 2.5 Gb/s, GbE, 622 Mb/s, 155 Mb/s
- Structure: phase-locked loop with an appropriate phase detector
- Focus: analog, digital, or hybrid (i.e., mixed-signal) implementation?
 M.H. Perrott

Key Jitter Performance Metrics for SONET

- Jitter generation: amount of jitter produced by PLL
 - Achieved by designing low noise PLL
- Jitter tolerance: amount of input jitter tolerated by PLL
 - Achieved through appropriate design of phase detector
- Jitter transfer: required filtering of input jitter
 - Achieved by properly designing transfer function of PLL
 - Key challenge: need < 0.1 dB peaking in transfer function</p>

The Woes of an Analog PLL Implementation

- Goal: integrated loop filter
- Issue: required cap value too large (100 uA charge pump):
 - **2.5 Gb/s (OC-48): 4 nF**
 - 155 Mb/s (OC-3): 64 nF

M.H. Perrott

Consider A Digital CDR ...

Digital loop filter allows:

- Easy integration of loop filter
- Easy configurability for multi-rate operation

Digital VCO Implementation

 Other researchers have demonstrated a "digital" LC VCO using a switched capacitor bank

Issue: better suited for 0.09u rather than 0.25u CMOS M.H. Perrott

Hybrid VCO Implementation

M.H. Perrott

Bang-Bang Structure as Digital Phase Detector?

Advantages: purely digital implementation with low complexity and low clock loading

Issue: leads to nonlinear CDR behavior

A Closer Look at the Bang-Bang Detector

- Phase error output consists of pulses of *fixed* area that are either positive or negative
 - Nonlinear phase detection!
- Issue: PLL dynamics become nonlinear
 - Difficult to meet SONET Jitter Transfer Specification
 - Prone to limit cycle issues

A Flash Phase-to-Digital Converter?

Chain several bang-bang detectors through delays

- Allows multi-level phase detection with digital structure
- Similar to time-to-digital converters of other researchers
 - Staszewski et. al., TCAS-II, Nov 2003 & ISSCC, Feb 2004
- Issues:
 - High power consumption (multi-GHz operation required)
 - High clock loading (complicates VCO buffer design)
 - Prone to limit cycle issues

An Analog Phase Detector?

- Hogge detector popular in analog CDR designs
- Advantages
 - Low complexity, power consumption, and clock loading
 - Leads to linear PLL dynamics
- Issue
 - We need a digital output!

Proposed Phase-to-Digital Converter

- Combine Hogge Detector with a high speed A/D
- Issues:
 - Want high resolution (i.e., to achieve high linearity)
 - Want low power, low clock loading, and compact area

Proposed A/D Approach

- A first order continuous-time Sigma-Delta A/D
 - Achieves high resolution, low power, low clock loading, compact area
- How could this work??
 - Can easily clock at GHz speeds (i.e., high oversampling)
 - Hogge output provides random dithering source for free

Phase-to-Digital Converter Implementation Details

Start with Hogge Detector/Charge Pump implementation

- Issue 1: Hogge detector is prone to phase offsets
 - Caused by unequal delays for XOR input signals
 - Degrades jitter tolerance performance

Improvement of Phase Offset of Hogge Detector

Extra latch improves matching of loads of Reg and Latch

Extra buffer ideally matches clk-to-Q delay of Reg

Challenge of 2.5 Gb/s Operation in 0.25u CMOS

- XOR outputs have pulse widths < 200 ps at 2.5 Gb/s</p>
 - Complicates efforts to achieve reasonable linearity and phase detector range

A Combined XOR/Charge Pump Topology

- Limits short pulse width signals to low impedance nodes
 - Fast pulses occur at source nodes of devices
 - Note: XOR outputs feed into "low impedance" capacitor
 - Combined implementation saves power and area

M.H. Perrott

Bias Network with Simple Common-Mode Feedback

- Common-mode feedback sets voltage according to voltage of top PMOS devices
 - Size PMOS devices appropriately for desired voltage
- Achieves high impedance with compact design

First Order, CT, Sigma-Delta A/D Topology

- Simple design allows high speed clocking
- Metastability behavior improved with:
 - Inclusion of Amp
 - Slight reduction of clock frequency (i.e., 1.25 GHz)

M.H. Perrott

Digital Loop Filter and D/A Implementation

Goal: digital implementation of analog lead/lag filter

- Issue: requires D/A with >> 1 MHz bandwidth, high resolution
 - An easier D/A implementation is preferred ...

Proposed Hybrid Loop Filter Approach

Lead/Lag filter can be decomposed into two paths

- Feedforward path (high bandwidth, easy in analog domain)
- Integrating path (low bandwidth, hard in analog domain)
 - Digital domain provides a compact implementation

Overall Hybrid Loop Filter Structure

- Accumulator acts as digital integrator
- Sigma-Delta D/A allows high resolution with easy implementation

Decimator lowers operating speed of accumulator and D/A

61

Walk Through of Decimator Implementation

Consider simply running accumulator at full rate

- Would need to run at GHz speeds in 0.25u CMOS
 - High power!
- Key observations
 - Accumulator output has higher resolution than needed by VCO input
 - We do not need the LSB portion of the accumulator output

Split Accumulator into LSB and MSB Sections

- Key observations:
 - We only need one line of communication between LSB and MSB sections (i.e., carry signals)
 - We only need to generate the carry out signal of the LSB section
 - We can replace the LSB section with a decimator structure and still preserve all relevant information

First Pass at Decimator Implementation

- We can implement the LSB accumulator with a ripple counter
 - Issue: ripple counter counts transitions
 - Solution: use appropriate translators to convert between voltage levels and transitions
- Next step: we have achieved an efficient LSB accumulator, but not a lower operating frequency
 M.H. Perrott

Final Decimator Architecture

- Re-clock divide-by-2 stages of ripple counter at progressively lower clock frequencies
 - Aligns ripple counter transitions to lower frequency clock boundaries
- MSB Accumulator now runs at 1/16 of the original frequency in the above example

Overall CDR Architecture

We have achieved:

- A low power, compact, highly linear phase-to-digital structure
- A low power, compact, highly configurable hybrid loop filter
- Compatible with existing hybrid VCO structures achieving excellent phase noise in 0.25u CMOS

M.H. Perrott

Die Photo

- Supply Voltage 2.5 V or 3.3 V
- Typical current
 - **170 mA (2.5 Gb/s)**
- Supported data rates
 - 2.7 Gb/s (FEC)
 - 2.5 Gb/s (OC-48)
 - Gigabit Ethernet
 - 622 Mb/s (OC-12)
 - 155 Mb/s (OC-3)
- Minimum input
 - 10 mV (differential)
- Package size
 - **5**mm X 5mm

Measured Jitter Tolerance and Transfer at 2.5 Gb/s

- SONET performance specifications met at all data rates:
- Jitter transfer (typ.)

 Peaking < 0.03 dB
- Jitter tolerance (min)
 - > 0.3 UI_{pp} (> 1 MHz)
- Jitter generation
 - 3 mUI rms (typ.)
 - 25 mUI pp (typ.)

Measured Eye Diagrams at 2.5 Gb/s

- Best Case Conditions
 - Input data: 2 Vp-p diff.
 - Pattern: PRBS 2⁷-1
 - Temperature: 25° C
 - **Jitter: 1.2 ps RMS**

- Worst Case Conditions
 - Input data: 10 mVppd
 - Pattern: PRBS 2³¹-1
 - Temperature: 100° C
 - Jitter: 1.4 ps RMS

What about the digital cap settings?

--- Digital frequency acquisition example ---

Referenceless Frequency Acquisition

- Use this information to determine digital cap settings

A Bit Error Detector Based on Forbidden Zone

- Key idea: sample input data at two different times
 - Change ber_detect value if the two results are different
- Implementation: achieve delayed clock with less than one buffer delay by using interpolative register
 M.H. Perrott
Interpolative Latch

- Effective latch time occurs between rising edges of input clocks (i.e., clk and clkp)
 - Adjustment of I_{bias1}/I_{bias2} allows adjustment of latch time
 - Choose $I_{bias1} = I_{bias2}$ in this application

M.H. Perrott

Combined Hogge Detector and Bit Error Detector

Sensing of bit errors adds minimal overhead to Hogge Det.

Note: Diff-to-Sngl and Sngl-to-Diff converters interface to lower speed signals (*ber_reset* and *ber_detect*)

M.H. Perrott

Sensing Bit Errors

For robust operation, only detect whether at least one bit error occurs within period of 2.5 MHz clock

BER Counter increases by one if the above occurs

Overall System with Referenceless Frequency Acq.

Digital cap settings are updated as shown when bit error counts exceed a threshold value

State Diagram for Referenceless Frequency Acq.

- Fast initial check of cap setting
 - Allows speedy visitation of all cap settings
 - Assumes a wrong cap setting will usually yield a high BER count
- Progressively slower checks of cap setting
 - Protects against false selection of a cap setting

Example: No Jitter, High Transition Density

BER counter goes to zero when correct digital cap setting is achieved

Measured Referenceless Frequency Acquisition

Change data input from 2.5 Gbit/s to 2.4 Gbit/s In this case, frequency acquisition completes in < 2 ms

M.H. Perrott

Example: High Jitter, Low Transition Density

BER Counter continues to have non-zero values even after correct digital cap setting is achieved

This information can be used to estimate BER of CDR

Measured BER Estimation versus Actual BER

Measured BER Estimate Vs Actual BER

Actual BER

Above measured results occur across:

- Worst case split lot corners
- *M.H. Perrott* **Temp: -40 to 85 degrees C, Voltage supply: 1.62 to 3.63 V**

Conclusion

- Mixed-signal techniques allow high performance to be achieved with low power and compact area
 - Phase-to-digital converter: combined Hogge PD and First Order Sigma-Delta A/D
 - Hybrid Loop Filter
 - All-digital frequency acquisition with minimal overhead
- Measured results confirm high performance
 - All SONET specifications met with 1.2 ps typical rms jitter
 - Referenceless frequency detection with BER monitor

Mixed-signal design philosophy: Leverage *both* analog and digital circuits such that their relative strengths are fully utilized