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Outline

Example of high performance digital frequency 
synthesizer
- Goal:  wide bandwidth (500 kHz) and low phase noise
- Techniques to achieve low implementation complexity

Example of high performance mixed-signal clock and 
data recovery
- Goal:  low jitter and full integration with compact area
- Techniques to achieve low implementation complexity 
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Going Digital …

Digital loop filter:  compact area,  insensitive to leakage
Challenges: 
- Time-to-Digital Converter (TDC)
- Digitally-Controlled Oscillator (DCO)

Staszewski et. al.,
TCAS II, Nov 2003
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Assumptions: 
- delay = 20ps
- carrier freq.

= 3.6GHz 
- reference freq.

= 50MHz
- PLL BW 

= 50kHz
- 3rd order ΔΣ

VCO noise dominates performance everywhere …
Don’t need very high TDC resolution
Δ−Σ fractional-N quantization noise is not an issue

Examine Noise Performance:  Narrow-Bandwidth Case

Total 
Noise
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Examine Noise Performance:  Wide-Bandwidth Case

Noise dominated by TDC at low frequencies
Noise dominated by ΔΣ fractional-N noise at high 
frequencies

Assumptions: 
- delay = 20ps 
- carrier freq.

= 3.6GHz 
- reference freq.

= 50MHz
- PLL BW 

= 500kHz
- 3rd order ΔΣ

Total 
Noise
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To Meet High Performance Applications like GSM….

Need 6-ps TDC resolution and 20dB cancellation of Δ−Σ
fractional-N noise to achieve 500kHz bandwidth

Assumptions: 
- delay = 6ps
- carrier freq.

= 3.6GHz 
- reference freq.

= 50MHz
- PLL BW 

= 500kHz
- 3rd order ΔΣ

(20dB lower) 

Total 
Noise
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Proposed Digital Wide BW Synthesizer

Gated-ring-oscillator (GRO) TDC achieves low in-band 
noise
All-digital quantization noise cancellation achieves low 
out-of-band noise
Design goals: 
- 3.6-GHz carrier, 500-kHz bandwidth- <-100dBc/Hz in-band, <-150 dBc/Hz at 20 MHz offset
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Key Enablers:  GRO and ΔΣ Frac-N Noise Cancellation

GRO offers low 
noise at low 
frequency offsets
ΔΣ fractional-N noise 
cancellation offers 
low noise at high 
frequency offsets
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Proposed Multi-Path GRO TDC

Average delay per stage is reduced from 35ps to 6ps
- Noise shaping further improves effective resolution

Hsu, Straayer, Perrott
ISSCC 2008
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Reduction of Fractional-N Quantization Noise

PFD Loop
Filter

N/N+1

Ref Out

M-bit 1-bit

Div

ΔΣ

 Modulator

Fout

Noise

Frequency
Selection

Frequency
Selection

Output
Spectrum

Quantization
Noise Spectrum

PLL dynamicsΔΣ

Increasing PLL bandwidth increases impact of ΔΣ
fractional-N noise
- Cancellation offers a way to counter this effect
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Previous Analog Quantization Noise Cancellation

Phase error due to ΔΣ is predicted by accumulating 
ΔΣ quantization error
Gain matching between PFD and D/A must be precise

Matching in analog domain limits performance
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Proposed All-digital Quantization Noise Cancellation

Scale factor determined by simple digital correlation 
Analog non-idealities such as DC offset are completely 
eliminated

Hsu, Straayer, Perrott
ISSCC 2008
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Details of Proposed Quantization Noise Cancellation

Correlator out is accumulated 
and filtered to achieve scale factor
- Settling time chosen to be around 

10 us
See analog version of this 
technique in Swaminathan et.al., 
ISSCC 2007
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Overall Synthesizer Architecture

Note:  Detailed behavioral simulation model available at 
http://www.cppsim.com
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Dual-Port LC VCO

Frequency tuning:
- Use a small 1X varactor to minimize noise sensitivity
- Use another 16X varactor to provide moderate range
- Use a four-bit capacitor array to achieve 3.3-4.1 GHz range
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VCO Varactor

Accumulation-mode varactor used for both coarse 
and fine frequency tuning
- Coarse varactor is 16 times the size of fine varactor
- Provides good ratio of capacitance versus voltage 

variation with limited supply voltage

n+ n+

N-well

gate

+_

P-sub
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Switched Structure for Coarse Cap Tuning

Ma0 provides low differential resistance for caps
- Ma3 and Ma4 provide low bias voltage to minimize Ma0 

channel resistance when Ma0 is turned on 
Minimizes impact on Q of tank

Ma2 provides high bias when Ma0 is turned off
- Keeps voltage at n1 and n2 defined and prevents turn-

on of Ma0

S.T. Lee et.al.,
JSSC, Dec 2004
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Digitally-Controlled Oscillator with Passive DAC

Goals of 10-bit DAC
- Monotonic
- Minimal active circuitry and no transistor bias currents
- Full-supply output range

1X varactor minimizes 
noise sensitivity
16X varactor provides 
moderate range
A four-bit capacitor 
array covers 3.3-4.1GHz



19M.H. Perrott

Operation of 10-bit Passive DAC (Step 1)

5-bit resistor ladder; 5-bit switch-capacitor array
Step 1: Capacitors Charged
- Resistor ladder forms VL = M/32•VDD and VH = (M+1)/32•VDD, 

where M ranges from 0 to 31
- N unit capacitors charged to VH, and (32-N) unit capacitors 

charged to VL
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Operation of 10-bit Passive DAC (Step 2)

Step 2: Disconnect Capacitors from Resistors, Then 
Connect Together
- Achieves DAC output with first-order filtering
- Bandwidth = 32• Cu/(2π•Cload)•50MHz

Determined by capacitor ratio
Easily changed by using different Cload
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Now Let’s Examine Divider …

Issues: 
- GRO range must span entire reference period during 

initial lock-in
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Proposed Divider Structure

Resample reference with 4x division frequency
- Lowers GRO range to one fourth of the reference period

Divide value 
=N0+N1+N2+N3
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Proposed Divider Structure (cont’d)

Place ΔΣ dithered edge away from GRO edge
- Prevents extra jitter due to divide-value dependent delay
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Asynchronous Divider Structure

Vaucher et. al., “A Family of Low-Power Truly Modular 
Programmable Dividers …”, JSSC, July 2000
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Implementation of 2/3 Sections in Modular Approach 

Same as discussed on day 2 of this class
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Implementation of 2/3 Section

Combines logic gates into TSPC latches 
- Requires only 1 ma at 3.6 GHz operation in 0.13u CMOS!
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Flip-Flop
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Dual-Path Loop Filter

Step 1: reset
Step 2: frequency acquisition
- Vc(t) varies
- Vf(t) is held at midpoint

Step 3: steady-state lock conditions
- Vc(t) is frozen to take quantization noise away
- ΔΣ quantization noise cancellation is enabled
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Fine-Path Loop Filter

Equivalent to an analog lead-lag filter
- Set zero (62.5kHz) and first pole (1.1MHz) digitally
- Set second pole (3.1MHz) by capacitor ratio

First-order ΔΣ reduces in-band quantization noise
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Same Technique Poses Problems for Coarse-Tune

DAC thermal noise impacts 
performance due to the 
higher coarse VCO gain
- Can we somehow lower 

the DAC bandwidth?
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Fix: Leverage the Divider as a Signal Path

Bypass to divider for feed-
forward path allows coarse 
DAC bandwidth to be 
dramatically reduced! 
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Linearized Model of PLL Under Fine-Tune Operation

Standard lead-lag filter topology but implemented in 
digital domain
- Consists of accumulator plus feedforward path
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Linearized Model of PLL Under Coarse-Tune Operation

Routing of signal path into Sigma-Delta controlling 
the divider yields a feedforward path
- Adds to accumulator path as both signals pass back 

through the divider
- Allows reduction of coarse DAC bandwidth

Noise impact of coarse DAC on VCO is substantially 
lowered
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VCO Buffer Implementation

Consists of inverters with self-biased first stage
- AC coupling from VCO output into buffer
- Achieves low noise (as will be seen in far-out phase 

noise in measured results)

1st-stage buf.

1st-stage buf.

2nd-stage buf. To Pad 

(Driving 50ohm load 

 from instrument)

To Divider
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Die Photo

0.13-μm CMOS
Active area: 0.95 mm2

Chip area: 1.96 mm2

VDD: 1.5V
Current: 
- 26mA (Core)
- 7mA (VCO output          

buffer at 1.1V)

GRO-TDC:
- 2.3mA
- 157X252 um2
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Power Distribution of Prototype IC

Notice GRO and digital quantization noise 
cancellation have only minor impact on power 
(and area)

   21.0mW
     (46%)

    7.7mW
     (17%)

Digital

GRO-TDC

Ref. Buffer

DAC
Divider

VCO Pad Buffer

VCO     6.8mW
     (15%)

    3.4mW
      (7%)

3.0mW

2.8mW

    (7%)

(6%)

1.4mW
   (3%)

 Total Power: 46.1mW 
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Measured Phase Noise at 3.67GHz

Suppresses 
quantization 
noise by 
more than  
15 dB
Achieves 
204 fs
(0.27 degree) 
integrated 
noise (jitter)
Reference 
spur: -65dBc
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-42dBc worst spur observed at 400kHz offset from boundary 
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Conclusions

Digital Phase-Locked Loops look extremely promising 
for future applications
- Very amenable to future CMOS processes
- Excellent performance can be achieved

A low-noise, wide-bandwidth digital ΔΣ fractional-N 
frequency synthesizer is achieved with
- High performance noise-shaping GRO TDC
- Quantization noise cancellation in digital domain

Key result:  < 250 fs integrated noise with 500 kHz 
bandwidth

Innovation of future digital PLLs will involve joint 
circuit/algorithm development



Mixed Signal CDR Example
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Clock and Data Recovery Circuits for SONET

Function:  recover clock from input NRZ data stream
- Want to support multi-rates:  2.5 Gb/s, GbE, 622 Mb/s, 155 Mb/s

Structure:  phase-locked loop with an appropriate phase 
detector
Focus:  analog, digital, or hybrid (i.e., mixed-signal) 
implementation?
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Key Jitter Performance Metrics for SONET

Jitter generation:  amount of jitter produced by PLL
- Achieved by designing low noise PLL

Jitter tolerance:  amount of input jitter tolerated by PLL
- Achieved through appropriate design of phase detector

Jitter transfer:  required filtering of input jitter
- Achieved by properly designing transfer function of PLL
- Key challenge:  need < 0.1 dB peaking in transfer function
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The Woes of an Analog PLL Implementation

Goal:  integrated loop filter
Issue:  required cap value too large (100 uA charge pump):
- 2.5 Gb/s (OC-48):  4 nF
- 155 Mb/s (OC-3):  64 nF
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Consider A Digital CDR …

Digital loop filter allows:
- Easy integration of loop filter
- Easy configurability for multi-rate operation
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Digital VCO Implementation

Other researchers have demonstrated a “digital” LC 
VCO using a switched capacitor bank
Issue:  better suited for 0.09u rather than 0.25u CMOS

Staszewski et. al., 
TCAS-II, Nov 2003
& ISSCC, Feb 2004
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Hybrid VCO Implementation

Advantages
- Low phase noise, easy implementation in 0.25u CMOS

Hegazi et. al. 
JSSC, Dec 2001 
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Bang-Bang Structure as Digital Phase Detector?

Advantages:  purely digital implementation with low 
complexity and low clock loading
Issue:  leads to nonlinear CDR behavior
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A Closer Look at the Bang-Bang Detector

Phase error output consists of pulses of fixed area 
that are either positive or negative
- Nonlinear phase detection!

Issue:  PLL dynamics become nonlinear
- Difficult to meet SONET Jitter Transfer Specification- Prone to limit cycle issues

retimed data(t)
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A Flash Phase-to-Digital Converter?

Chain several bang-bang detectors through delays
- Allows multi-level phase detection with digital structure
- Similar to time-to-digital converters of other researchers

Staszewski et. al., TCAS-II, Nov 2003 & ISSCC, Feb 2004
Issues:
- High power consumption (multi-GHz operation required)
- High clock loading (complicates VCO buffer design)
- Prone to limit cycle issues
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An Analog Phase Detector?

Hogge detector popular in analog CDR designs
Advantages
- Low complexity, power consumption, and clock loading
- Leads to linear PLL dynamics

Issue
- We need a digital output!
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Proposed Phase-to-Digital Converter

Combine Hogge Detector with a high speed A/D
Issues:  
- Want high resolution (i.e., to achieve high linearity) 
- Want low power, low clock loading, and compact area 
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Proposed A/D Approach

A first order continuous-time Sigma-Delta A/D
- Achieves high resolution, low power, low clock loading, 

compact area
How could this work??
- Can easily clock at GHz speeds (i.e., high oversampling)
- Hogge output provides random dithering source for free
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Phase-to-Digital Converter Implementation Details

Issue 1:  Hogge detector is prone to phase offsets
- Caused by unequal delays for XOR input signals
- Degrades jitter tolerance performance
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Improvement of Phase Offset of Hogge Detector

Extra latch improves matching of loads of Reg and Latch
Extra buffer ideally matches clk-to-Q delay of Reg
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Challenge of 2.5 Gb/s Operation in 0.25u CMOS

XOR outputs have pulse widths < 200 ps at 2.5 Gb/s
- Complicates efforts to achieve reasonable linearity and 

phase detector range
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A Combined XOR/Charge Pump Topology

Limits short pulse width signals to low impedance nodes
- Fast pulses occur at source nodes of devices- Note:  XOR outputs feed into “low impedance” capacitor

Combined implementation saves power and area
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Bias Network with Simple Common-Mode Feedback

Common-mode feedback sets voltage according to 
voltage of top PMOS devices
- Size PMOS devices appropriately for desired voltage

Achieves high impedance with compact design
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First Order, CT, Sigma-Delta A/D Topology

Simple design allows high speed clocking
Metastability behavior improved with:
- Inclusion of Amp
- Slight reduction of clock frequency (i.e., 1.25 GHz)
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Digital Loop Filter and D/A Implementation

Goal:  digital implementation of analog lead/lag filter
Issue:  requires D/A with >> 1 MHz bandwidth, high 
resolution
- An easier D/A implementation is preferred …
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Proposed Hybrid Loop Filter Approach

Lead/Lag filter can be decomposed into two paths
- Feedforward path (high bandwidth, easy in analog domain)
- Integrating path (low bandwidth, hard in analog domain)

Digital domain provides a compact implementation
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Overall Hybrid Loop Filter Structure

Accumulator acts as digital integrator
Sigma-Delta D/A allows high resolution with easy 
implementation
Decimator lowers operating speed of accumulator and D/A
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Walk Through of Decimator Implementation

Consider simply running accumulator at full rate
- Would need to run at GHz speeds in 0.25u CMOS

High power!
Key observations
- Accumulator output has higher resolution than needed by 

VCO input
- We do not need the LSB portion of the accumulator output
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Split Accumulator into LSB and MSB Sections

Key observations:
- We only need one line of communication between LSB 

and MSB sections (i.e., carry signals)
- We only need to generate the carry out signal of the LSB 

section
- We can replace the LSB section with a decimator 

structure and still preserve all relevant information
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First Pass at Decimator Implementation

We can implement the LSB accumulator with a ripple 
counter
- Issue:  ripple counter counts transitions
- Solution:  use appropriate translators to convert 

between voltage levels and transitions
Next step:   we have achieved an efficient LSB 
accumulator, but not a lower operating frequency

IN
OUT

Level to

Transition0

1

clk2
2 2 2

Ripple

Counter

IN
OUT

Transition

to Level
ph_err

D Q

clk2

IN

OUT

D Q
clk2

IN

OUT

Up

Σ−Δ

DAC
OUT

clk2

ACCUM

Down

VCO

Input



65M.H. Perrott

Final Decimator Architecture

Re-clock divide-by-2 stages of ripple counter at 
progressively lower clock frequencies
- Aligns ripple counter transitions to lower frequency 

clock boundaries
MSB Accumulator now runs at 1/16 of the original 
frequency in the above example
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Overall CDR Architecture

We have achieved:
- A low power, compact, highly linear phase-to-digital structure
- A low power, compact, highly configurable hybrid loop filter
- Compatible with existing hybrid VCO structures achieving 

excellent phase noise in 0.25u CMOS

Data In
(2.5 Gb/s)

Clk16
(156 MHz)

Clk2

(1.25 GHz)

Digital Integration Path

If

Hogge
Det.

Σ−Δ

Vref

1

-1

RL

VCO

Analog Feedforward
Path

digital
cap

settings

A

buffer

2

Σ−Δ

D/A

Phase-to-Digital Converter

Ii

Clk
(2.5 GHz)

Dec Accum



67M.H. Perrott

Die Photo

Supply Voltage
- 2.5 V or 3.3 V

Typical current
- 170 mA (2.5 Gb/s)

Supported data rates
- 2.7 Gb/s (FEC)- 2.5 Gb/s (OC-48)- Gigabit Ethernet- 622 Mb/s (OC-12)- 155 Mb/s (OC-3)

Minimum input
- 10 mV (differential)

Package size
- 5mm X 5mm
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Measured Jitter Tolerance and Transfer at 2.5 Gb/s

SONET performance 
specifications met at 
all data rates:

Jitter transfer (typ.)
- Peaking < 0.03 dB

Jitter tolerance (min)
- > 0.3 UIpp (> 1 MHz)

Jitter generation
- 3 mUI rms (typ.)
- 25 mUI pp (typ.)

Measured Jitter Tolerance and Transfer at 2.5Gb/s
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Measured Eye Diagrams at 2.5 Gb/s

Best Case Conditions
- Input data: 2 Vp-p diff.
- Pattern: PRBS 27-1
- Temperature: 25° C
- Jitter: 1.2 ps RMS

Worst Case Conditions
- Input data: 10 mVppd
- Pattern: PRBS 231-1
- Temperature: 100° C
- Jitter: 1.4 ps RMS



What about the digital cap settings?

--- Digital frequency acquisition example ---
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Referenceless Frequency Acquisition

Utilize a “Forbidden Zone” to infer frequency lock
- Use this information to determine digital cap settings
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A Bit Error Detector Based on Forbidden Zone

Key idea:  sample input data at two different times
- Change ber_detect value if the two results are different

Implementation:  achieve delayed clock with less than 
one buffer delay by using interpolative register
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Interpolative Latch

Effective latch time occurs between rising edges of 
input clocks (i.e., clk and clkp)
- Adjustment of Ibias1/Ibias2 allows adjustment of latch time

Choose Ibias1 = Ibias2 in this application
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Combined Hogge Detector and Bit Error Detector

Sensing of bit errors adds minimal overhead to Hogge Det.
- Note: Diff-to-Sngl and Sngl-to-Diff converters interface to 

lower speed signals (ber_reset and ber_detect)
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Sensing Bit Errors

For robust operation, only detect whether at least one
bit error occurs within period of 2.5 MHz clock
- BER Counter increases by one if the above occurs
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Overall System with Referenceless Frequency Acq.

Digital cap settings are updated as shown when bit 
error counts exceed a threshold value
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State Diagram for Referenceless Frequency Acq.

Fast initial check 
of cap setting
- Allows speedy 

visitation of all 
cap settings

- Assumes a 
wrong cap 
setting will 
usually yield a 
high BER count

Progressively 
slower checks of 
cap setting
- Protects against 

false selection of 
a cap setting 
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Step Digital Caps

State 2
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Evaluate over 48 Cycles
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Example:   No Jitter, High Transition Density

BER counter goes to zero when correct digital cap 
setting is achieved

VCO Input

Feedforward Output

Accumulator Output (Integration Path)

BER Counter

Digital Cap Settings (Least Significant Caps)

0 UI Jitter, 1/2 Transition Density
0.5

-0.5
0.5

-0.5

5000

0
20

0
5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Simulation Sample Number (X1000)



79M.H. Perrott

Measured Referenceless Frequency Acquisition

Change data input from 2.5 Gbit/s to 2.4 Gbit/s
- In this case, frequency acquisition completes in < 2 ms
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Example:  High Jitter, Low Transition Density

BER Counter continues to have non-zero values even 
after correct digital cap setting is achieved
- This information can be used to estimate BER of CDR
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Measured BER Estimation versus Actual BER

Above measured results occur across:
- Worst case split lot corners
- Temp:  -40 to 85 degrees C, Voltage supply: 1.62 to 3.63 V
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Conclusion

Mixed-signal techniques allow high performance to be 
achieved with low power and compact area
- Phase-to-digital converter:  combined Hogge PD and First 

Order Sigma-Delta A/D
- Hybrid Loop Filter
- All-digital frequency acquisition with minimal overhead

Measured results confirm high performance
- All SONET specifications met with 1.2 ps typical rms jitter
- Referenceless frequency detection with BER monitor

Mixed-signal design philosophy:
Leverage both analog and digital circuits such that 

their relative strengths are fully utilized
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