Short Course On Phase-Locked Loops and Their Applications Day 5, AM Lecture

Advanced PLL Examples (Part I)

Michael Perrott August 15, 2008

Copyright © 2008 by Michael H. Perrott All rights reserved.

Outline

- Fast offset compensation for CDR limit amps
- Fractional-N based DLL
- Low-jitter multiplying DLL
- Sub-harmonic injection-locked oscillator

A 3.125 Gb/s Limit Amplifier in CMOS with 42 dB Gain and 1us Offset Compensation

> Ethan A. Crain, Michael H. Perrott Massachusetts Institute of Technology

A Fast Acquisition Limit Amp

- Acquisition time of CDR is limited by slow response of limit amp offset correction loop (typically milliseconds)
- Goal: improve speed of offset correction

Motivation for Offset Compensation

Without offset compensation the output of high gain amplifiers can saturate due to offset voltage alone

Motivation for Offset Compensation

Offset compensation is required for high gain amplifiers to prevent the output from saturating due to offset

Classical offset compensation methods suffer from long compensation times

Why long settling times matter

Compensation only happens once in one-to-one links Typical offset compensation time $\approx 1ms$

Why long settling times matter

- \Rightarrow Proposed method
- \Rightarrow Peak detector design
- \Rightarrow System Details
- \Rightarrow Measured results
- \Rightarrow Conclusions

Proposed Method – Key Assumptions

- Assume that the data path is differential and the two data paths have approximately equal gains
- Assume that we are processing NRZ data
- The output-referred offset is equal to the difference in output common-mode levels

Proposed Method – Key Assumptions

Traditional Peak Detector

Consider operation of traditional CMOS peak detector

Operation During Track Phase

Fast Offset Compensation \rightarrow Large I_{bias}

Operation During Hold Phase

Droop proportional to both I_{bias} and T_{data} Data dependent droop \rightarrow Jitter (ISI)

Small Jitter
$$\rightarrow$$
 Small I_{bias}

Trade-Off for Traditional Peak Detector

Trade-off betwen *settling time* and *jitter performance* due to Inter-Symbol Interference!

Fast Settling \rightarrow Large I_{bias} Low Jitter \rightarrow Small I_{bias}

Can we modify the design to improve the trade-off?

Proposed Solution

Add switch device that is controlled by the input

Proposed Solution – Track Phase

Same operation as original peak detector circuit

Proposed Solution – Hold Phase

Droop is ideally independent of both I_{bias} and T_{data}

Can achieve small jitter with a large I_{bias}

Proposed Solution – Differential Design

Use inputs to switch I_{bias} between the two source-follower circuits

Proposed Solution – Operation

Incomplete switching causes non-zero droop

Proposed Solution – Operation

Incomplete switching causes non-zero droop

Simultaneously achieve fast offset

compensation and low droop

Multi-Tap Compensation

- Dynamic multi-tap control loops are required
- Peak detector at each amplifier output
- All loops have matched gain

Test System – Die Micrograph

Fabricated in National Semiconductor's

- 3.125*Gb/s* limit-amp. 42dB gain 5GHz BW
- Compensation time $< 1 \mu s$
- Meet OC48 jitter specs. $< 4 p s_{RMS}$ @ 2.5Gb/s
- Total area: $1mm^2$
- Active area: $0.5mm^2$
- Supply Voltage: 1.8V
- Total Power: 338mW
- Power of LA & Offset
 Compensition: 113mW

Test System – Measured Results

24

Offset Compensation Settling time $pprox 1\mu s$						
			Data Rate			
		Input Amp	1.0Gb/s	2.5Gb/s	3.125Gb/s	
		2.5mVpp	3.94	3.71	5.90	
		10mVpp	2.65	2.86	6.30	
		50mVpp	1.13	2.52	7.98	
	Meets OC-48 Jitter Spec (< 4.0ps RMS) down to $V_{in,pp}$ = 2.5 mV					
V _{control} Offset Comp.						
Voffs))) et	-Vin+	A(s		Vout	

25

Test System – Measured Results

Summary

- Proposed peak detector design enables a 1000x improvement in the trade-off between settling time and output jitter by changing relationship between peak detector bandwidth and output droop
- Implemented and tested system with proposed offset compensation method that has 2.5mVpp input sensitivity and that meets OC48 jitter specifications (< 4ps RMS @ 2.5Gb/s)</p>
- Behavior model download:
 - http://www.cppsim.com

A Delay-Locked Loop using a Synthesizer-based Phase Shifter for 3.2 Gb/s Chip-to-Chip Communication

Chun-Ming Hsu, Charlotte Y. Lau, Michael H. Perrott Massachusetts Institute of Technology

Delay-Locked Loop for Data Recovery

- In some applications, a reference clock that is perfectly matched in frequency to data sequence is available
 - Phase mismatch is present due to different propagation delays between clock and data on the PC board
- A delay-locked loop limits adjustment to phase (as opposed to phase and frequency)
 - Faster, and much simpler to design than PLL structure

Delay-Locked Loop using Phase-Interpolator

Infinite delay range and good jitter performance

Issue:

Good matching needed for accurate phase control, but future processes promise high variation ...

Can we eliminate the need for good matching?

Use Σ-Δ frequency synthesizer as a phase shifter

VCO-based Phase Shifter

- VCO output phase increases or decreases by a step when a pulse is fed into it
- Fine phase resolution and infinite range are achieved

Issue1: How to control the VCO frequency accurately? Issue2: How to control the phase step accurately?

Solution: Synthesizer-based Phase Shifter

- Use a PLL to lock VCO frequency to received clock
- Use Σ-Δ technique *in digital domain* to control the VCO phase

Most Synthesizer Applications Look at Frequency

Fractional output frequency is provided by a fractional-N frequency synthesizer

Here We Will Look at Phase

Phase step decreases together with pulse height

Phase step is determined only by the number of bits of the Σ-Δ modulator → No process, voltage, and temperature (PVT) variations

36
Design Consideration of the Phase Shifter

■ Wait enough time before feeding next pulse to allow proper settling of VCO phase → T_d > 1/bandwidth

How to implement a simple Σ-Δ modulator?

Phase Shifter Guided by Staircase Input

Use a differentiator to generate the pulses from a staircase input

Phase Shifter Guided by Up/Down Counter

VCO phase shifts according to Up/Down counter

Phase Shifter Guided by Up/Down Counter (cont'd)

VCO phase shifts according to Up/Down counter

Phase Shifter Guided by Up/Down Counter (cont'd)

Phase resolution improves by increasing number of bits in the hardware

Problem: Up/Down Counter Overflows

Large negative pulse caused by overflow rotates VCO phase by a large step in the wrong direction

Phase shifter provides a phase range of only 2π *M.H. Perrott*

Solution: Add Overflow Signal to Output

Generate a +1 pulse to cancel the undesired -15/16 pulse

Phase shifter provides an infinite phase range

Quantization Noise of Phase Shifter

- Second-order quantization noise exists
- Transfer function of a differentiator is the same as noise transfer of a first-order Σ-Δ modulator

Quantization Noise of Phase Shifter (cont'd)

Change the order of differentiator and modulator

 Same quantization noise obtained with a first-order Σ-Δ modulator → Less circuit complexity

Proposed Σ-Δ Modulator

Output is three-value (1,0,-1)

Divider with three division ratios (N-1, N, N+1) is necessary

Proposed Σ-Δ Modulator (cont'd)

- Multiple first-order Σ-Δ Modulators are used
 - Bit number decreases as operating frequency increases
 - Metastability and synchronization problems are avoided

Easy Design and low power

Proposed Σ-Δ Modulator (cont'd)

Proposed Σ-Δ Modulator (cont'd)

Overflow signals are realigned to main signals in each domain

• Output is still three-value even with the extra adder

Use Bang-Bang detector for phase comparison

Proposed Bang-Bang Architecture

An analog integrator, whose output is saturated to VDD or GND, is used to accumulate bang-bang detector output

DLL Prototype Chip for 3.2 Gb/s Communication

8-bit \Sigma-\Delta modulator \rightarrow 1.4° phase resolution

Simple analog components without need of good matching *M.H. Perrott*

Chip Microphotograph

 Implemented by 0.18um CMOS Process
 Core Area: 600um X 700 um
 1.8 V, 55 mA (excluding I/O buffer)

DLL Measured Jitter

- Left: 3.2Gb/s PRBS 2³¹-1
 - Single-ended clock jitter < 4.8ps</p>
 - Single-ended data jitter < 30.5ps
- Right: 3.2Gb/s PRBS 2³¹-1
 - Differential clock Jitter < 3.7ps</p>
- BER < 10⁻¹²

Non-ISI-limited DLL Jitter

- 1.6Gb/s PRBS 2⁷-1
 - Single-ended clock Jitter < 4.7ps</p>
 - Single-ended data jitter < 5.2ps</p>
- BER < 10⁻¹²

Conclusion

- A DLL architecture is proposed
 - **Σ-**Δ synthesizer is used as the phase shifter
 - A compact and low-power Σ-Δ modulator
 - Simple Bang-bang detector is used for phase detection
- Prototype is implemented for 3.2 Gb/s chip-to-chip communication
- The DLL provides a digitally-controlled phase adjustment with fine-resolution and infinite-range that is not sensitive to PVT variations
- The overall architecture is insensitive to mismatch
 - Well suited for more advanced CMOS processes with high variability

Low Jitter, Highly Digital, MDLL-based Clock Multiplier

Belal M. Helal, Matthew Z. Straayer, Gu-Yeon Wei^{*} and Michael H. Perrott

M.H. Perrott

Motivation

- Issue: Clock multiplication using phaselocked loops complicates the design of digital chips.
- Goal: Achieve a highly digital clock multiplier that can be easily ported across different CMOS processes.

Do not compromise on jitter performance

We will present a non-PLL based clock multipliers that achieves sub-ps jitter performance

PLL: Typical Architecture for Clock Multiplication

- Application determines VCO type
 - **Lowest noise** \rightarrow LC oscillator
 - **Smallest area** \rightarrow Ring oscillator

How to reject the high phase noise of a ring oscillator?
M.H. Perrott

Rejection of High Phase Noise in Ring Oscillators

- Phase noise contributors: VCO and PFD noise
 - Affected differently by PLL bandwidth, f₀
- VCO noise: high-pass filtered PFD noise: low-pass filtered
 - **Tradeoff:** bandwidth $\uparrow \rightarrow$ VCO noise \downarrow , PFD noise \uparrow

Can we suppress VCO noise without large bandwidth?
M.H. Perrott

Time Domain View: Reducing VCO Jitter

- Problem: Jitter accumulates with time according to loop dynamics to a steady state level, σ_{ss}
- Solution: reset jitter at a rate faster than the loop BW
 - How?

Multiplying DLL Concept

 Goal: Create a higher frequency clock from an input reference signal

Replace jittery edge with clean Reference edge
 Accumulated jitter is periodically removed

The Benefit of the MDLL Approach

- Phase noise of ring oscillator is suppressed by the periodic multiplexing of reference edge
- Transfer function approximates a 1st order high pass filter
 - **f**_{hpf} \approx **f**_{Ref} / 4

High bandwidth suppression of phase noise independent of loop bandwidth

Deterministic Jitter in MDLLs

Key issue: Need to precisely tune ring oscillator frequency

- Offset in frequency results in inconsistent period
 - → deterministic jitter

Goal: Reduce deterministic jitter to the level of random jitter

Deterministic Jitter Observed in Output Spectrum

Deterministic jitter shows up as reference spurs

Relationship by Fourier analysis

$$\Delta \approx T_{out} \times 10^{Spur(dBc)/20}$$

Deterministic Jitter can be estimated from reference spurs

Classical Analog Approach

- Key idea: Compare edges of MDLL output and reference to detect error (△)
 - Integrate error to adjust V_{tune}
- The problem: Mismatches and offsets in the phase detector and integrator limit reduction of ∆

Low deterministic jitter is challenging to achieve

Proposed Detection Approach

- Compare cycle periods of MDLL output
- Infer error (A) from difference between cycle periods of the MDLL output

Comparison of same signal eliminates path mismatch

Detection of the Output Period

- Need an accurate period detector
 - Error removal is limited by the effective resolution of the detector
- A digital detector has many advantages
 - Time-to-digital converter (TDC)

Scrambling TDC (developed by Matt Straayer)

- Gated Ring Oscillator (GRO) is ON during the measured period
- Raw resolution is one inverter delay
- Quantization noise is scrambled (and first order noise shaped)
- M.H. PEffective resolution improved by averaging

Using the GRO in the proposed MDLL Architecture

- Div_{2x} selects two output periods per reference cycle
- Sub-picosecond effective resolution is possible
 - T_{gro} = 50 ps, Fs = 100 MHz, BW = 10 KHz \rightarrow Eff. Res. \approx 0.7 ps

GRO Detects the Output Period Accurately

Digital Correlator Extracts the Error

Digital version of correlated double-sampling technique

Close the Loop

Allows low bandwidth without leakage or large area

V_{tune} adjustment only needs to track thermal variations M.H. Perrott
MDLL Prototype

- Two custom 0.13µm CMOS ICs
 - GRO (Matt Straayer) and core MDLL structures
- FPGA
 - **Digital Correlator, Accumulator and digital** $\Sigma\Delta$ -modulator
- Discrete 16-bit DAC and RC lowpass filter (3 MHz pole)
- **DAC** using 8 effective bits (by using the $\Sigma\Delta$ -modulator) *M.H. Perrott*

Power Consumption and Area

- Core MDLL
 - Area: 0.04 mm²
 - Power: 3.9 mW
- GRO-based TDC
 - Area: 0.02 mm²
 - Power: 1.2 mW

Circuit Details

Multiplexed Ring Oscillator

- Balanced differential loading
 - → Better PSRR and 1/f noise

Five delay stages, no external connections to multiplexer
→ Faster edges → better multiplexing

Select Logic and Enable Logic

- Select Logic
 - Mostly standard cells
 - Relaxed timing
 - Sel at middle of output transition
 - → better multiplexing
- Enable Logic
 - Simple implementation
 - Single path detection

Measured Overall Jitter

x position -420 fs

μ±3σ 99.6%

Max 5.13 ps

M.H. Perrott

8

Jitter Estimation from Measured Ref. Spur and Ph. Noise

- Reference spur: -58.3 dBc
- \rightarrow Deterministic jitter: \approx 760 fs (peak-to-peak)
- Random jitter : 679 fs (rms)
 - From integrated phase noise (1 kHz to 40 MHz)

Sub-picosecond of estimated random and deterministic jitter

Performance Comparison

	[ISSCC 2002]	[CICC 2006]	[CICC 2006]	This work
Output Frequency (GHz)	2.0	1.216	0.176	1.6
Reference Frequency (MHz)	250	64	8	50
Reference Spur (dBc)	-37	-46.5	-70 (estimated)	-58.3
Deterministic Jitter (ps pp) estimated from meas. Spurs (Figure-of-merit)	7.06	3.89	1.80	0.76

Performance Comparison

	[ISSCC 2002]	[CICC 2006]	[CICC 2006]	This work
Output Frequency (GHz)	2.0	1.216	0.176	1.6
Reference Frequency (MHz)	250	64	8	50
Reference Spur (dBc)	-37	-46.5	-70 (estimated)	-58.3
Deterministic Jitter (ps pp) estimated from meas. Spurs (Figure-of-merit)	7.06 (reported DJ: 12)	3.89	1.80	0.76
Random Jitter (ps rms) from integrated phase noise	N/A	N/A	5 (1.8 simulated) (1 kHz to 10 MHz)	0.68 (1 kHz to 40 MHz)
Overall Jitter	1.62 ps (rms) 13.11 ps (p-p) 25 khits	(@2.16 GHz) 1.6 ps (rms) 12.9 ps (p-p) 12.2 khits	N/A	0.93 ps (rms) 11.1 ps (p-p) 30.1 Mhits
Technology (CMOS)	0.18 µm	0.18 µm	0.18 µm	0.13 µm

Conclusion

Digital Period Correlator

- Detects tuning error without path mismatch
- Enables a digital loop filter

Highly-digital tuning technique

- Avoids analog non-idealities
- Enables low bandwidth without leakage or large area

Highly digital MDLL

- **1.6 GHz from 50 MHz reference**
- Significantly-reduced deterministic jitter
- Sub-picosecond jitter

A Low Noise Programmable Clock Multiplier based on a Pulse Injection-Locked Oscillator with a Highly-Digital Tuning Loop

Belal M. Helal, Chun-Ming Hsu, Kerwin Johnson, and Michael H. Perrott

Motivation

- Goal: clock multiplication of a clean reference source
 - Applications: high performance data links, ADCs, processors, etc.
- Our approach: sub-harmonic injection-locking of an LC oscillator

How do we achieve very low jitter levels?

Sub-Harmonic Injection-Locking of an LC Oscillator

- Sub-harmonic injection locking can be achieved with current pulses
 - Pulses have rich harmonic content to lock to
 - Oscillator locks its voltage peaks to the pulses
 - Locking bandwidth proportional to the injected charge

Problems with Current Pulse Injection Locking

Asymmetric injections in differential oscillators

 \rightarrow large reference spurs

- Current pulses have constant level even at ideal tuning
 - → Oscillator amplitude is disturbed periodically
 - \rightarrow increased reference spurs

Proposed Pulse Injection-Locked Oscillator (PILO)

- Injection lock by shorting the tank instead of using constant current pulses
- Injected pulse shifts phase towards zero crossing
- Minimal disturbance to oscillator amplitude when injected with narrow pulses and properly tuned

The Need for Continuous Tuning

M.H. Perrott

How do we achieve continuous tuning?

Proposed Tuning Approach

- Leverage a tuning technique originally developed for Multiplying Delay-Locked Loops (MDLLs)
 - See Helal et al., JSSC, April 2008

Output Period Detection

- Compare cycle periods of PILO output
- Infer error (△) from difference between cycle periods of the PILO output
- Use this information to control V_{tune}

Comparison of same signal eliminates path mismatch

Detection of the Output Period

- Need an accurate period detector
 - Error removal is limited by the effective resolution of the detector
- A digital detector has many advantages
 - Time-to-digital converter (TDC)

Scrambling TDC

- Gated Ring Oscillator (GRO) is ON during the measured period
- Quantization noise is scrambled (and first order noise shaped)
 - Effective resolution improved by averaging
- We are using a new version of the GRO
- Details in Straayer, et al., VLSI 2008 M.H. Perrott

Using the GRO in the proposed PILO Architecture

Oversampling improves the effective resolution significantly

T_{gro} = 20 ps, Fs = 100 MHz, BW = 1 kHz

 \rightarrow Effective resolution \approx 90 fs

GRO detects the output period accurately

Digital Correlator Extracts the Error

Digital version of correlated double-sampling technique

Close the Loop

- No DC offsets
- Allows low bandwidth without leakage or large area

V_{tune} adjustment only needs to track thermal variations M.H. Perrott

PILO Prototype

- Discrete 16-bit DAC and RC lowpass filter (500 kHz pole)
 - **DAC** using 8 effective bits (by using the $\Sigma\Delta$ -modulator)

Circuit Details

Proposed PILO Implementation

- Differential Injection by shorting
 - Minimizes deterministic jitter by preserving injection symmetry
- Narrow pulses minimize effect on Q of the tank
 - Minimal residual effect when tuned

Enable Logic

Asynchronous Modular divider

- Pulse width of mod_x ≈ multiples of VCO periods
 - → Enable signal from any mod output (with reasonable width)
- Simple implementation and low power consumption

Enable Logic: Divider Step Control

GRO TDC must capture periods that includes the injected pulse
→ Divider stepped until Ref rises during Enable

Measured Results

Measured Phase Noise (Open-loop tuned PILO)

Random jitter: 91 fs (rms)

From integrated phase noise (1 kHz to 20 MHz)

Measured Phase Noise (close-loop tuned PILO)

Carrier 3.200004448 GHz -2.5148 dBm -70.00 1 kHz -95.1217 dBd/Hz 21 10 kHz -106.1642 dBd/Hz -75.00100 kHz -121.2031 dBd/Hz 31 -127.3696 41 1 MHz dBd /Hz -80.00-131.5144 10 MHz 61 20 MHz -135.4797 ldBd /Hz 40 MHz -142,3862 dBd /Hz -85.00 Nohisel‡ **Closed-loop** ysis Range X: Full Range -90,00 ýsis Range Y: Full Range Into Noise: -54.4150 dBd / 40 MHz Tuned -95,00 RMŠ Noise: 2.69007 mrad 154.13 mded (3.2 GHz) -100.0RMS Jitter: 133.793 fisēd Residual FM: 28.1463 kHz -105.0-110.0-115.0-120.0**Open-loop** -125.0Tuned -130.0(3.2 GHz) -135.0-140.0-145.0-150.0 10% 100 2114 1/0N \sim Freg Band [300M-7GHz] LO Opt [<150kHz] IF Gain 30dB 595pts Phase Noise Start 1 kHz Stop 40 MHz 32/32

▶Phase Noise 5.000dB/ Ref -70.00dBc/Hz

Random jitter: 134 fs (rms)

From integrated phase noise (1 kHz to 40 MHz)

Measured Reference Spurs and Est. Deterministic Jitter

Reference Spur: -63.4 dBc

• From Fourier analysis: $\Delta \approx T_{out} \times 10^{Spur(dBc)/20}$

\rightarrow Estimated deterministic jitter \approx 211 fs (peak-to-peak)

Process	0.13 μm CMOS
Core Area	0.4 mm ²
Core Power	28.6 mW
Output Frequency	3.2 GHz (up to 4 GHz)
Reference Frequency	50 MHz
Reference Spur	-63.4 dBc
Deterministic Jitter	211 fs (peak-to-peak), estimated from measured reference spurs
Random Jitter	134 fs (rms), from integrated phase noise (1 kHz to 40 MHz)

Future Research Area: Optical PILO

- RF output from an optical reference input
- Leverage Mode-Locked lasers
 - Train of very short optical pulses
 - Ultra-low jitter in the range of 10's fs to sub-fs

Conclusions

- Clock multiplication by injection locking
 - Lower jitter than typical PLLs
 - Achieved continuous tuning
- Pulse Injection-Locked Oscillator (PILO)
 - Injection by shorting minimizes deterministic jitter when tuned

PILO-based clock multiplier with highly-digital tuning

- **3.2 GHz from 50 MHz reference**
- Random jitter: 134 fs (rms)
- Deterministic jitter: 211 fs (peak-to-peak)
- Avoids analog non-idealities
- Enables low bandwidth without leakage or large area