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Outline

Fast offset compensation for CDR limit amps

Fractional-N based DLL

Low-jitter multiplying DLL

Sub-harmonic injection-locked oscillator 



A 3.125 Gb/s Limit Amplifier in CMOS with 42 dB 
Gain and 

1us Offset Compensation

Ethan A. Crain, Michael H. Perrott
Massachusetts Institute of Technology
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A Fast Acquisition Limit Amp

Acquisition time of CDR is limited by slow response 
of limit amp offset correction loop (typically 
milliseconds)
Goal:  improve speed of offset correction
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Motivation for Offset Compensation
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Motivation for Offset Compensation
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Why long settling times matter
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Why long settling times matter
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Outline



10M.H. Perrott

Proposed Method – Key Assumptions
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Proposed Method – Key Assumptions
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Traditional Peak Detector
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Operation During Track Phase
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Operation During Hold Phase
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Trade-Off for Traditional Peak Detector
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Proposed Solution
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Proposed Solution – Track Phase
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Proposed Solution – Hold Phase
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Proposed Solution – Differential Design
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Proposed Solution – Operation
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Proposed Solution – Operation
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Multi-Tap Compensation

Dynamic multi-tap control loops are required
Peak detector at each amplifier output
All loops have matched gain
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Test System – Die Micrograph
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Test System – Measured Results
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Test System – Measured Results

Data Rate
Input Amp 1.0Gb/s 2.5Gb/s 3.125Gb/s

2.5mVpp 3.94 3.71 5.90
10mVpp 2.65 2.86 6.30
50mVpp 1.13 2.52 7.98
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Test System – Measured Results
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Summary

Proposed peak detector design enables a 1000x 
improvement in the trade-off between settling 
time and output jitter by changing relationship 
between peak detector bandwidth and output 
droop
Implemented and tested system with proposed 
offset compensation method that has 2.5mVpp 
input sensitivity and that meets OC48 jitter 
specifications (< 4ps RMS @ 2.5Gb/s)
Behavior model download:
- http://www.cppsim.com



A Delay-Locked Loop using a Synthesizer-based 
Phase Shifter for 3.2 Gb/s

Chip-to-Chip Communication

Chun-Ming Hsu, Charlotte Y. Lau, Michael H. Perrott
Massachusetts Institute of Technology
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Delay-Locked Loop for Data Recovery

In some applications, a reference clock that is 
perfectly matched in frequency to data sequence is 
available
- Phase mismatch is present due to different propagation 

delays between clock and data on the PC board
A delay-locked loop limits adjustment to phase (as 
opposed to phase and frequency)
- Faster, and much simpler  to design than PLL structure
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Delay-Locked Loop using Phase-Interpolator

Infinite delay range and good jitter performance
Issue:
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Good matching needed for accurate phase control,
but future processes promise high variation …



Can we eliminate the need for good matching?
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Proposed DLL

Use Σ-Δ frequency synthesizer as a phase shifter
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VCO-based Phase Shifter

VCO output phase increases or decreases by a step 
when a pulse is fed into it
Fine phase resolution and infinite range are achieved
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Vctrl(t)
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Issue1: How to control the VCO frequency accurately?
Issue2: How to control the phase step accurately?
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Solution: Synthesizer-based Phase Shifter

Use a PLL to lock VCO frequency to received clock 
Use Σ-Δ technique in digital domain to control the 
VCO phase
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Most Synthesizer Applications Look at Frequency

Fractional output frequency is provided by a   
fractional-N frequency synthesizer
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Here We Will Look at Phase ….

Phase step is determined only by the number of bits of 
the Σ-Δ modulator        No process, voltage, and 
temperature (PVT) variations 

Phase step decreases together with pulse height
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Design Consideration of the Phase Shifter

Wait enough time before feeding next pulse to allow 
proper settling of VCO phase       Td > 1/bandwidth

How to implement a simple Σ-Δ modulator?
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Phase Shifter Guided by Staircase Input

Use a differentiator to generate the pulses from a 
staircase input
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Phase Shifter Guided by Up/Down Counter

VCO phase shifts according to Up/Down counter
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Phase Shifter Guided by Up/Down Counter (cont’d)

VCO phase shifts according to Up/Down counter
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Phase Shifter Guided by Up/Down Counter (cont’d)

Phase resolution improves by increasing number of bits 
in the hardware
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Problem: Up/Down Counter Overflows

Large negative pulse caused by overflow rotates VCO phase by 
a large step in the wrong direction
Phase shifter provides a phase range of only 2π

PFD
Charge

Pump

Loop

Filter

Divider

2nd-order

clk(t)
φout(t)

n[k]

M

        up/dn  Differentiator  Up/Down

Counter 

1/16
0

R

fref

Td

2π/16

1

2π
/1

6

2

2
π

/1
6

3

2π/1600

1/16

15/16

2
π

/1
6

4

2
π

/1
6

5

        Up/Down Counter Output          VCO Phase 

14/16
13/16

-15/16

fref /R=1/Td

4 4



43M.H. Perrott

Solution: Add Overflow Signal to Output

Generate a +1 pulse to cancel the undesired -15/16 pulse
Phase shifter provides an infinite phase range
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Quantization Noise of Phase Shifter

Second-order quantization noise exists
Transfer function of a differentiator is the same as noise 
transfer of a first-order Σ-Δ modulator 
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Quantization Noise of Phase Shifter (cont’d)

Change the order of differentiator and modulator
Same quantization noise obtained with a first-order Σ-Δ
modulator        Less circuit complexity
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Proposed Σ-Δ Modulator

Output is three-value (1,0,-1)
Divider with three division ratios (N-1, N, N+1)  is necessary
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Proposed Σ-Δ Modulator (cont’d)

Multiple first-order Σ-Δ Modulators are used
- Bit number decreases as operating frequency increases- Metastability and synchronization problems are avoided

Easy Design and low power
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Proposed Σ-Δ Modulator (cont’d)

Blue: 533-MHz Modulator
Green: 267-MHz Modulator
Red: 33-MHz Modulator
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Proposed Σ-Δ Modulator (cont’d)

Overflow signals are realigned to main signals in each domain
Output is still three-value even with the extra adder
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Proposed DLL

Use Bang-Bang detector for phase comparison
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Proposed Bang-Bang Architecture

An analog integrator, whose output is saturated to VDD 
or GND, is used to accumulate bang-bang detector 
output 

Bang-Bang

  Detector

clk(t)

retimed

data(t)

adjusted clk(t)

data(t)

Phase

Shifter

Td

up/dn

3.2 Gb/s

3.2 Gb/s

Q  D

1/Td ~ 1MHz~ 1MHz

Td



52M.H. Perrott

DLL Prototype Chip for 3.2 Gb/s Communication

8-bit Σ-Δ modulator 1.4˚ phase resolution 
Simple analog components without need of good matching
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Chip Microphotograph

Implemented by 
0.18um CMOS 
Process
Core Area: 

600um X 700 um
1.8 V, 55 mA
(excluding I/O 
buffer)700 um

600 um
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DLL Measured Jitter

Left: 3.2Gb/s PRBS 231-1
- Single-ended clock jitter < 4.8ps
- Single-ended data jitter < 30.5ps

Right: 3.2Gb/s PRBS 231-1
- Differential clock Jitter < 3.7ps

BER < 10-12



55M.H. Perrott

Non-ISI-limited DLL Jitter

1.6Gb/s PRBS 27-1
- Single-ended clock Jitter < 4.7ps
- Single-ended data jitter < 5.2ps

BER < 10-12
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Conclusion

A DLL architecture is proposed
- Σ-Δ synthesizer is used as the phase shifter
- A compact and low-power Σ-Δ modulator
- Simple Bang-bang detector is used for phase detection

Prototype is implemented for 3.2 Gb/s chip-to-chip 
communication
The DLL provides a digitally-controlled phase 
adjustment with fine-resolution and infinite-range that 
is not sensitive to PVT variations
The overall architecture is insensitive to mismatch
- Well suited for more advanced CMOS processes with             

high variability



Low Jitter, Highly Digital, 
MDLL-based Clock Multiplier

Belal M. Helal, Matthew Z. Straayer,
Gu-Yeon Wei* and Michael H. Perrott
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Motivation 

Issue:  Clock multiplication using phase-
locked loops complicates the design of 
digital chips. 

Goal:  Achieve a highly digital clock 
multiplier that can be easily ported 
across different CMOS processes.
- Do not compromise on jitter performance

We will present a non-PLL based clock
multipliers that achieves sub-ps jitter performance 



59M.H. Perrott

PLL: Typical Architecture for Clock Multiplication

Application determines VCO type
- Lowest noise LC oscillator- Smallest area Ring oscillator

How to reject the high phase noise of a ring oscillator?
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Rejection of High Phase Noise in Ring Oscillators

Phase noise contributors: VCO and PFD noise
- Affected differently by PLL bandwidth, f0

VCO noise: high-pass filtered PFD noise: low-pass filtered
- Tradeoff: bandwidth ↑ VCO noise ↓ , PFD noise ↑

Can we suppress VCO noise without large bandwidth?
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Time Domain View: Reducing VCO Jitter

Problem: Jitter accumulates with 
time according to loop dynamics 
to a steady state level,  σss

Solution: reset jitter at a rate faster 
than the loop BW- How?

log σ(ΔT)

log ΔT
τLoop

σss

log σ(ΔT)

log ΔT
τLoop

σss

• • •
σnew

McNeill, JSSC, 
June 1997
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Mux

Ref

Sel

Multiplying DLL Concept

Accumulated jitter Clean edge 
from Ref

Goal:  Create a higher frequency clock from an input 
reference signal

Replace jittery edge with clean Reference edge
- Accumulated jitter is periodically removed
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0 
1 Ref
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Vtune

0 
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The Benefit of the MDLL Approach

Ye, Jansson, Galton,
JSSC, Dec. 2002 
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Phase noise of ring oscillator is suppressed by the 
periodic multiplexing of reference edge
Transfer function approximates a 1st order high pass filter
- fhpf ≈ fRef / 4

High bandwidth suppression of phase noise
independent of loop bandwidth



64M.H. Perrott

Vtune
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Mux
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Deterministic Jitter in MDLLs

Key issue:  Need to precisely tune ring oscillator frequency
Offset in frequency results in inconsistent period

deterministic jitter

Goal: Reduce deterministic jitter to the level of random jitter
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Deterministic Jitter Observed in Output Spectrum

Deterministic jitter shows 
up as reference spurs

Relationship by Fourier 
analysis
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Classical Analog Approach

Key idea: Compare edges of MDLL output and reference 
to detect error (Δ)
- Integrate error to adjust Vtune

The problem:  Mismatches and offsets in the phase 
detector and integrator limit reduction of Δ

Farjad-Rad et. al., JSSC, Dec. 2002.

Low deterministic jitter is challenging to achieve
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Proposed Detection Approach

Comparison of same signal eliminates path mismatch

Compare cycle periods of MDLL output
Infer error (Δ) from difference between cycle periods 
of the MDLL output
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Detection of the Output Period

Need an accurate period detector 
- Error removal is limited by the effective resolution of the 

detector
A digital detector has many advantages
- Time-to-digital converter (TDC)
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Gated Ring Oscillator (GRO) is ON during the measured period
Raw resolution is one inverter delay
Quantization noise is scrambled (and first order noise shaped)
Effective resolution improved by averaging

Ring Oscillator
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Error
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Scrambling TDC (developed by Matt Straayer)
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Using the GRO in the proposed MDLL Architecture 
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GRO Detects the Output Period Accurately

Div2x selects two output periods per reference cycle
Sub-picosecond effective resolution is possible

Tgro = 50 ps, Fs = 100 MHz, BW = 10 KHz  Eff. Res. ≈ 0.7 ps
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Digital Correlator Extracts the Error

Digital version of correlated double-sampling technique
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- Infinite DC gain
- No DC offsets
- Allows low bandwidth without leakage or large area

Vtune adjustment only needs to track thermal variations

Close the Loop
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MDLL Prototype

Two custom 0.13μm CMOS ICs
- GRO (Matt Straayer) and core MDLL structures

FPGA
- Digital Correlator, Accumulator and digital ΣΔ-modulator

Discrete 16-bit DAC and RC lowpass filter (3 MHz pole)
- DAC using 8 effective bits (by using the ΣΔ-modulator)
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Power Consumption and Area

Core MDLL- Area: 0.04 mm2

- Power: 3.9 mW

GRO-based TDC- Area: 0.02 mm2

- Power: 1.2 mW



Circuit Details
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Multiplexed Ring Oscillator

Balanced differential loading
Better PSRR and 1/f noise

Five delay stages, no external connections to multiplexer
Faster edges better multiplexing

Similar to:
Dai, Harjani, ASIC-
SOC, Sep. 2001
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Select Logic
- Mostly standard cells
- Relaxed timing
- Sel at middle of output transition 

better multiplexing

Enable Logic
- Simple implementation
- Single path detection

Select Logic and Enable Logic
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D Q

Mode

R

____

Out3

Div2x en dis

Last
Divider
Stage

Div
D Q

D Q D Q

S
Q

R
Enable



78M.H. Perrott

Measured Overall Jitter

Measured overall jitter:
- 928 fs (rms)
- 11.1 ps (peak-to-peak)

Sub-picosecond jitter
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Jitter Estimation from Measured Ref. Spur and Ph. Noise

Reference spur: -58.3 dBc
Deterministic jitter: ≈ 760 fs (peak-to-peak)
Random jitter :    679 fs (rms)
- From integrated phase noise (1 kHz to 40 MHz) 

Sub-picosecond of estimated random and deterministic jitter



80M.H. Perrott

Performance Comparison

[ISSCC 2002] [CICC 2006] [CICC 2006] This work

Output Frequency (GHz) 2.0 1.216 0.176 1.6
Reference Frequency 

(MHz) 250 64 8 50

Reference  Spur (dBc) -37 -46.5 -70 (estimated) -58.3

Deterministic Jitter (ps pp)
estimated from meas. Spurs

(Figure-of-merit)
7.06 3.89 1.80 0.76
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Performance Comparison

[ISSCC 2002] [CICC 2006] [CICC 2006] This work

Output Frequency (GHz) 2.0 1.216 0.176 1.6

Reference Frequency 
(MHz) 250 64 8 50

Reference  Spur (dBc) -37 -46.5 -70 (estimated) -58.3

Deterministic Jitter (ps pp)
estimated from meas. Spurs

(Figure-of-merit)

7.06
(reported DJ: 

12)
3.89 1.80 0.76

Random Jitter (ps rms)
from integrated phase noise N/A N/A 5 (1.8 simulated)

(1 kHz to 10 MHz)
0.68

(1 kHz to 40 MHz)

Overall Jitter
1.62 ps (rms)
13.11 ps (p-p)

25 khits

(@2.16 GHz)
1.6 ps (rms)
12.9 ps (p-p)

12.2 khits

N/A
0.93 ps (rms)
11.1 ps (p-p)
30.1 Mhits

Technology (CMOS) 0.18 μm 0.18 μm 0.18 μm 0.13 μm



82M.H. Perrott

Conclusion

Digital Period Correlator
- Detects tuning error without path mismatch
- Enables a digital loop filter

Highly-digital tuning technique 
- Avoids analog non-idealities
- Enables low bandwidth without leakage or large area

Highly digital MDLL
- 1.6 GHz from 50 MHz reference
- Significantly-reduced deterministic jitter
- Sub-picosecond jitter
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Motivation 

Goal: clock multiplication of a clean reference source
- Applications: high performance data links, ADCs, 

processors, etc.

Our approach:  sub-harmonic injection-locking of an 
LC oscillator 

fref 3 fref2 fref 4 fref

f

f

fout

How do we achieve very low jitter levels?
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Sub-Harmonic Injection-Locking of an LC Oscillator

Sub-harmonic injection locking can be achieved with current 
pulses

Pulses have rich harmonic content to lock to
Oscillator locks its voltage peaks to the pulses
Locking bandwidth proportional to the injected charge

[Razavi, JSSC 2004]

[Toso et al., ISSCC 2008]
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Problems with Current Pulse Injection Locking

Asymmetric injections in differential oscillators
large reference spurs 

Current pulses have constant level even at ideal tuning
Oscillator amplitude is disturbed periodically
increased reference spurs

[Toso et al., ISSSC 2008]
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Proposed Pulse Injection-Locked Oscillator (PILO)

Injection lock by shorting the tank instead of using 
constant current pulses
Injected pulse shifts phase towards zero crossing
Minimal disturbance to oscillator amplitude when injected 
with narrow pulses and properly tuned 
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The Need for Continuous Tuning

Iosc

Vosc

Iosc Iosc

L C
Vosc

Iosc

Vosc

Ref

Injected pulse

too low

too high

ideal

Vtune

Vosc

VoscVtune

Injected pulse



How do we achieve continuous tuning?
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Proposed Tuning Approach

Leverage a tuning technique originally developed for 
Multiplying Delay-Locked Loops (MDLLs)
- See Helal et al., JSSC, April 2008
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Output Period Detection

Comparison of same signal eliminates path mismatch

Compare cycle periods of PILO output
Infer error (Δ) from difference between cycle periods 
of the PILO output
Use this information to control Vtune

Vtune

Ref

Out

Out

Injected

 VCO

Pulse

Gen.

  Injpulse

Ref

Out

Injpulse

Period

Detect

T+Δ T T+Δ T

Δ Δ

PILO
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Detection of the Output Period

Need an accurate period detector 
- Error removal is limited by the effective resolution of the 

detector
A digital detector has many advantages
- Time-to-digital converter (TDC)

Vtune

Ref

Out

Out

Injected

 VCO

Pulse

Gen.

  Injpulse

Ref

Out

Injpulse

?
Period

Detect

T+Δ T T+Δ T

Δ Δ

PILO
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Gated Ring Oscillator (GRO) is ON during the measured period
Quantization noise is scrambled (and first order noise shaped)
- Effective resolution improved by averaging

We are using a new version of the GRO
- Details in Straayer, et al., VLSI 2008

Scrambling TDC

[Helal, Straayer, et al., JSSC 2008]
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Using the GRO in the proposed PILO Architecture 

GRO detects the output period accurately

Oversampling improves the effective resolution significantly  
Tgro = 20 ps, Fs = 100 MHz, BW = 1 kHz  

Effective resolution ≈ 90 fs

T+Δ T T+Δ T

Vtune

Ref

Out

Enable

Logic

Enable

Enable

GRO
TDC

T+Δ
T

T+Δ
TTDC

Out

Injected

 VCO

Pulse

Gen.

  Injpulse

Ref

Out

Injpulse

PILO
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Digital Correlator Extracts the Error

Digital version of correlated double-sampling technique

T+Δ T T+Δ T

Vtune

Ref

Out

Enable

Logic

Enable

Enable

CorrelatorGRO
TDC Corr

T+Δ
T

T+Δ
T

Δ

TDC

Corr Δ

Out

Injected

 VCO

Pulse

Gen.

  Injpulse

Ref

Out

Injpulse

PILO
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Close the Loop

Digital accumulator
- Infinite DC gain
- No DC offsets
- Allows low bandwidth without leakage or large area

Vtune adjustment only needs to track thermal variations

T+Δ T T+Δ T

Vtune

Ref

Out

Enable

Logic

Enable

Enable

Correlator DACGRO

2

Lowpass
TDC Corr

T+Δ
T

T+Δ
T

Δ

TDC

Corr Δ

Accum.

Out

Injected

 VCO

Pulse

Gen.

  Injpulse

Ref

Out

Injpulse

PILO



97M.H. Perrott

PILO Prototype

Custom 0.13μm CMOS IC
- Active area: 0.4 mm2

- Active Power: 28.6 mW
FPGA
- Accumulator and digital ΣΔ-modulator

Discrete 16-bit DAC and RC lowpass filter (500 kHz pole)
- DAC using 8 effective bits (by using the ΣΔ-modulator)

Vtune

Ref

Enable

Logic

Injected

 VCO

Pulse

Gen.

  Enable

(@2 Fref)

  Out

  Injpulse

    subclk 

(@ Fref / M)

Correlator

Accum/Dump

Correlator

Timing

DAC

GRO

RC Filt.

FPGA
50 MHz

3.2 GHz

Accum Σ−Δ
8 8 8



Circuit Details
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Proposed PILO Implementation

Differential Injection by shorting
- Minimizes deterministic jitter by preserving injection symmetry

Narrow pulses minimize effect on Q of the tank
- Minimal residual effect when tuned 

Cap

Bank

Pulse Generator Full Swing Buffer

Ref

Vtune

Vosc

Ibias

4

  Out

  Injpulse
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Enable Logic

Asynchronous Modular divider
Pulse width of modx ≈ multiples of VCO periods

Enable signal from any mod output (with reasonable width)
Simple implementation and low power consumption

[similar to

Voucher, et al, 

JSSC 2000 ]
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Enable Logic: Divider Step Control

GRO TDC must capture periods that includes the injected pulse
Divider stepped until Ref rises during Enable



Measured Results
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Measured Phase Noise (Open-loop tuned PILO)

Reference
Source 

(50 MHz)

Open-loop
tuned PILO
(3.2 GHz)

36 dB increase
if scaled to the 

output frequency

Random jitter:    91 fs (rms)
- From integrated phase noise (1 kHz to 20 MHz) 
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Measured Phase Noise (close-loop tuned PILO)

Random jitter:    134 fs (rms)
- From integrated phase noise (1 kHz to 40 MHz) 

Closed-loop
Tuned

(3.2 GHz)

Open-loop
Tuned 

(3.2 GHz)
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Measured Reference Spurs and Est. Deterministic Jitter

Reference Spur: -63.4 dBc

From Fourier analysis: 

Estimated deterministic jitter ≈ 211 fs (peak-to-peak)

63.4 dB

50 MHz

20/)(10 dBcSpur
outT ×≈Δ
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Performance Summary

Process 0.13 μm CMOS

Core Area 0.4 mm2

Core Power 28.6 mW

Output Frequency 3.2 GHz (up to 4 GHz)

Reference 
Frequency 50 MHz

Reference  Spur -63.4 dBc

Deterministic 
Jitter 

211 fs (peak-to-peak), 
estimated from measured reference spurs

Random 
Jitter  

134 fs (rms), 
from integrated phase noise (1 kHz to 40 MHz)
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Future Research Area: Optical PILO

RF output from an optical reference input
Leverage Mode-Locked lasers
- Train of very short optical pulses
- Ultra-low jitter in the range of 10’s fs to sub-fs

Refoptical
Out

http://www.wilsonindustries.com/
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Conclusions

Clock multiplication by injection locking
- Lower jitter than typical PLLs
- Achieved continuous tuning

Pulse Injection-Locked Oscillator (PILO)
- Injection by shorting minimizes deterministic jitter when tuned

PILO-based clock multiplier with highly-digital tuning
- 3.2 GHz from 50 MHz reference
- Random jitter: 134 fs (rms)
- Deterministic jitter: 211 fs (peak-to-peak)
- Avoids analog non-idealities
- Enables low bandwidth without leakage or large area
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